Efficient Vehicle Routing Problem: A Machine Learning and Evolutionary Computation Approach

Pratyay Mukherjee, Ramanathan A, S. Dey
{"title":"Efficient Vehicle Routing Problem: A Machine Learning and Evolutionary Computation Approach","authors":"Pratyay Mukherjee, Ramanathan A, S. Dey","doi":"10.1145/3583133.3596425","DOIUrl":null,"url":null,"abstract":"The Vehicle Routing Problem with Time Windows (VRPTW) is an extension of VRP that introduces time window constraints to the routing optimization process. Scaling Evolutionary Computation algorithms for VRPTW to handle large-scale problems poses significant challenges. Machine Learning assisted Evolutionary Computation strategy have been proposed to enhance optimization algorithms' efficiency and effectiveness. This study proposes a machine-learning model that exploits the graphical nature of VRP to design and improve evolutionary computational methods. The aim is to improve the resilience and efficiency of VRPTW optimization and provide better-quality solutions for practical applications.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Vehicle Routing Problem with Time Windows (VRPTW) is an extension of VRP that introduces time window constraints to the routing optimization process. Scaling Evolutionary Computation algorithms for VRPTW to handle large-scale problems poses significant challenges. Machine Learning assisted Evolutionary Computation strategy have been proposed to enhance optimization algorithms' efficiency and effectiveness. This study proposes a machine-learning model that exploits the graphical nature of VRP to design and improve evolutionary computational methods. The aim is to improve the resilience and efficiency of VRPTW optimization and provide better-quality solutions for practical applications.
高效车辆路线问题:一种机器学习和进化计算方法
带时间窗的车辆路径问题(VRPTW)是对VRP的扩展,它在路径优化过程中引入了时间窗约束。VRPTW的扩展进化计算算法对处理大规模问题提出了重大挑战。为了提高优化算法的效率和有效性,提出了机器学习辅助进化计算策略。本研究提出了一种机器学习模型,该模型利用VRP的图形特性来设计和改进进化计算方法。旨在提高VRPTW优化的弹性和效率,为实际应用提供更高质量的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信