{"title":"Splitting approaches for context-aware recommendation: an empirical study","authors":"Yong Zheng, R. Burke, B. Mobasher","doi":"10.1145/2554850.2554989","DOIUrl":null,"url":null,"abstract":"User and item splitting are well-known approaches to context-aware recommendation. To perform item splitting, multiple copies of an item are created based on the contexts in which it has been rated. User splitting performs a similar treatment with respect to users. The combination of user and item splitting: UI splitting, splits both users and items in the data set to boost context-aware recommendations. In this paper, we perform an empirical comparison of these three context-aware splitting approaches (CASA) on multiple data sets, and we also compare them with other popular context-aware collaborative filtering (CACF) algorithms. To evaluate those algorithms, we propose new evaluation metrics specific to contextual recommendation. The experiments reveal that CASA typically outperform other popular CACF algorithms, but there is no clear winner among the three splitting approaches. However, we do find some underlying patterns or clues for the application of CASA.","PeriodicalId":285655,"journal":{"name":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554850.2554989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
User and item splitting are well-known approaches to context-aware recommendation. To perform item splitting, multiple copies of an item are created based on the contexts in which it has been rated. User splitting performs a similar treatment with respect to users. The combination of user and item splitting: UI splitting, splits both users and items in the data set to boost context-aware recommendations. In this paper, we perform an empirical comparison of these three context-aware splitting approaches (CASA) on multiple data sets, and we also compare them with other popular context-aware collaborative filtering (CACF) algorithms. To evaluate those algorithms, we propose new evaluation metrics specific to contextual recommendation. The experiments reveal that CASA typically outperform other popular CACF algorithms, but there is no clear winner among the three splitting approaches. However, we do find some underlying patterns or clues for the application of CASA.