Efficient pattern mining on shared memory systems: implications for chip multiprocessor architectures

G. Buehrer, Yen-kuang Chen, S. Parthasarathy, A. Nguyen, A. Ghoting, Daehyun Kim
{"title":"Efficient pattern mining on shared memory systems: implications for chip multiprocessor architectures","authors":"G. Buehrer, Yen-kuang Chen, S. Parthasarathy, A. Nguyen, A. Ghoting, Daehyun Kim","doi":"10.1145/1178597.1178603","DOIUrl":null,"url":null,"abstract":"Frequent pattern mining is a fundamental data mining process which has practical applications ranging from market basket data analysis to web link analysis. In this work, we show that state-of-the-art frequent pattern mining applications are inefficient when executing on a shared memory multiprocessor system, due primarily to poor utilization of the memory hierarchy. To improve the efficiency of these applications, we explore memory performance improvements, task partitioning strategies, and task queuing models designed to maximize the scalability of pattern mining on SMP systems. Empirically, we show that the proposed strategies afford significantly improved performance. We also discuss implications of this work in light of recent trends in micro-architecture design, particularly chip multiprocessors (CMPs).","PeriodicalId":130040,"journal":{"name":"Workshop on Memory System Performance and Correctness","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Memory System Performance and Correctness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1178597.1178603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Frequent pattern mining is a fundamental data mining process which has practical applications ranging from market basket data analysis to web link analysis. In this work, we show that state-of-the-art frequent pattern mining applications are inefficient when executing on a shared memory multiprocessor system, due primarily to poor utilization of the memory hierarchy. To improve the efficiency of these applications, we explore memory performance improvements, task partitioning strategies, and task queuing models designed to maximize the scalability of pattern mining on SMP systems. Empirically, we show that the proposed strategies afford significantly improved performance. We also discuss implications of this work in light of recent trends in micro-architecture design, particularly chip multiprocessors (CMPs).
共享内存系统上的有效模式挖掘:对芯片多处理器架构的影响
频繁模式挖掘是一种基本的数据挖掘过程,从市场购物篮数据分析到web链接分析都有实际应用。在这项工作中,我们展示了最先进的频繁模式挖掘应用程序在共享内存多处理器系统上执行时效率低下,这主要是由于内存层次结构利用率低下。为了提高这些应用程序的效率,我们探索了内存性能改进、任务分区策略和任务队列模型,这些模型旨在最大限度地提高SMP系统上模式挖掘的可扩展性。经验表明,我们提出的策略提供显著提高的性能。我们还根据微架构设计的最新趋势,特别是芯片多处理器(cmp),讨论了这项工作的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信