S. Miroshnychenko, A. Nevgasymyy, S. Senchurov, O. Motolyga, Khrystyna Faryna
{"title":"Simulated Phantom Projections for Reconstruction Quality Control in Digital Tomosynthesis","authors":"S. Miroshnychenko, A. Nevgasymyy, S. Senchurov, O. Motolyga, Khrystyna Faryna","doi":"10.1109/ELNANO.2018.8477526","DOIUrl":null,"url":null,"abstract":"IMASIM software was used to generate sets of X-ray projections for quality control in digital tomosynthesis. Corresponding projections of a polymethylmethacrylate(PMMA) phantom with the same size were taken using x-ray tomosynthesis imaging equipment. A specially designed fiduciary marker bead phantom was used to measure the relative positions of imaging system elements. A good correspondence was found between real and simulated projections and reconstructed slices. The ability to create simulated projections with predefined imperfections gives valuable benefits to analysis of overall tomosynthesis performance.","PeriodicalId":269665,"journal":{"name":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELNANO.2018.8477526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
IMASIM software was used to generate sets of X-ray projections for quality control in digital tomosynthesis. Corresponding projections of a polymethylmethacrylate(PMMA) phantom with the same size were taken using x-ray tomosynthesis imaging equipment. A specially designed fiduciary marker bead phantom was used to measure the relative positions of imaging system elements. A good correspondence was found between real and simulated projections and reconstructed slices. The ability to create simulated projections with predefined imperfections gives valuable benefits to analysis of overall tomosynthesis performance.