How to speed Connected Component Labeling up with SIMD RLE algorithms

F. Lemaitre, A. Hennequin, L. Lacassagne
{"title":"How to speed Connected Component Labeling up with SIMD RLE algorithms","authors":"F. Lemaitre, A. Hennequin, L. Lacassagne","doi":"10.1145/3380479.3380481","DOIUrl":null,"url":null,"abstract":"The research in Connected Component Labeling, although old, is still very active and several efficient algorithms for CPUs and GPUs have emerged during the last years and are always improving the performance. This article introduces a new SIMD run-based algorithm for CCL. We show how RLE compression can be SIMDized and used to accelerate scalar run-based CCL algorithms. A benchmark done on Intel, AMD and ARM processors shows that this new algorithm outperforms the State-of-the-Art by an average factor of x1.7 on AVX2 machines and x1.9 on Intel Xeon Skylake with AVX512.","PeriodicalId":164160,"journal":{"name":"Proceedings of the 2020 Sixth Workshop on Programming Models for SIMD/Vector Processing","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Sixth Workshop on Programming Models for SIMD/Vector Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3380479.3380481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The research in Connected Component Labeling, although old, is still very active and several efficient algorithms for CPUs and GPUs have emerged during the last years and are always improving the performance. This article introduces a new SIMD run-based algorithm for CCL. We show how RLE compression can be SIMDized and used to accelerate scalar run-based CCL algorithms. A benchmark done on Intel, AMD and ARM processors shows that this new algorithm outperforms the State-of-the-Art by an average factor of x1.7 on AVX2 machines and x1.9 on Intel Xeon Skylake with AVX512.
如何加速连接组件标记与SIMD RLE算法
互联元件标注的研究虽然由来已久,但仍然非常活跃,近年来出现了几种针对cpu和gpu的高效算法,并不断提高性能。本文介绍了一种新的基于SIMD运行的CCL算法。我们展示了如何将RLE压缩进行SIMDized并用于加速基于标量运行的CCL算法。在英特尔、AMD和ARM处理器上进行的基准测试表明,这种新算法在AVX2机器上的平均性能是x1.7倍,在AVX512的英特尔至强Skylake上的平均性能是x1.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信