Refined Convergence Rates of the Good-Turing Estimator

Amichai Painsky
{"title":"Refined Convergence Rates of the Good-Turing Estimator","authors":"Amichai Painsky","doi":"10.1109/ITW48936.2021.9611389","DOIUrl":null,"url":null,"abstract":"The Good-Turing (GT) estimator is perhaps the most popular framework for modelling large alphabet distributions. Classical results show that the GT estimator convergences to the occupancy probability, formally defined as the total probability of words that appear exactly k times in the sample. In this work we introduce new convergence guarantees for the GT estimator, based on worst-case MSE analysis. Our results refine and improve upon currently known bounds. Importantly, we introduce a simultaneous convergence rate to the entire collection of occupancy probabilities.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Good-Turing (GT) estimator is perhaps the most popular framework for modelling large alphabet distributions. Classical results show that the GT estimator convergences to the occupancy probability, formally defined as the total probability of words that appear exactly k times in the sample. In this work we introduce new convergence guarantees for the GT estimator, based on worst-case MSE analysis. Our results refine and improve upon currently known bounds. Importantly, we introduce a simultaneous convergence rate to the entire collection of occupancy probabilities.
Good-Turing估计器的改进收敛速率
Good-Turing (GT)估计器可能是建模大型字母分布最流行的框架。经典结果表明,GT估计器收敛于占用概率,正式定义为单词在样本中恰好出现k次的总概率。在这项工作中,我们引入了基于最坏情况MSE分析的GT估计器的新的收敛保证。我们的结果细化和改进了目前已知的边界。重要的是,我们将同时收敛率引入到占用概率的整个集合中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信