Determining Linguistic Models with Constrained Fuzzy Regression

J. M. Barone
{"title":"Determining Linguistic Models with Constrained Fuzzy Regression","authors":"J. M. Barone","doi":"10.1109/AIHAS.1992.636882","DOIUrl":null,"url":null,"abstract":"Principled, automated procedures for assigning optimal linguistic representations to the output (or input) data space of a fuzzy control universe do not exist at the present time. This paper suggests that locating and verifying such assignments via constrained fizzy linear regression can provide the necessary foundation for their (automated) optimization. The procedure described here is related to methods for the resolution of (so-called) illposed problems and consists essentially of repeated iterations of fizzy linear regression and (crisp) linear programming operations over linguistic representations of Jicuy numbers which \"cover\" the raw data.. lbis paper demonstrates that a global approach to the problem of Jinding the optimal linguistic representations for raw cfuzzy control) data may prove simpler, more eflective, and more readily machine-learnable than the local approaches used heretofore.","PeriodicalId":442147,"journal":{"name":"Proceedings of the Third Annual Conference of AI, Simulation, and Planning in High Autonomy Systems 'Integrating Perception, Planning and Action'.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Annual Conference of AI, Simulation, and Planning in High Autonomy Systems 'Integrating Perception, Planning and Action'.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIHAS.1992.636882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Principled, automated procedures for assigning optimal linguistic representations to the output (or input) data space of a fuzzy control universe do not exist at the present time. This paper suggests that locating and verifying such assignments via constrained fizzy linear regression can provide the necessary foundation for their (automated) optimization. The procedure described here is related to methods for the resolution of (so-called) illposed problems and consists essentially of repeated iterations of fizzy linear regression and (crisp) linear programming operations over linguistic representations of Jicuy numbers which "cover" the raw data.. lbis paper demonstrates that a global approach to the problem of Jinding the optimal linguistic representations for raw cfuzzy control) data may prove simpler, more eflective, and more readily machine-learnable than the local approaches used heretofore.
用约束模糊回归确定语言模型
为模糊控制领域的输出(或输入)数据空间分配最佳语言表示的原则性、自动化过程目前尚不存在。本文认为,通过约束气泡线性回归来定位和验证这些分配可以为其(自动)优化提供必要的基础。这里描述的过程与解决(所谓的)病态问题的方法有关,基本上由反复迭代的线性回归和(清晰的)线性规划操作组成,这些操作是对“覆盖”原始数据的Jicuy数的语言表示进行的。本文证明了一种全局方法来解决金定问题(原始模糊控制数据的最佳语言表示)可能比迄今为止使用的局部方法更简单,更具反思性,更容易机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信