Named entity recognition using point prediction and active learning

Koga Kobayashi, Kei Wakabayashi
{"title":"Named entity recognition using point prediction and active learning","authors":"Koga Kobayashi, Kei Wakabayashi","doi":"10.1145/3366030.3366072","DOIUrl":null,"url":null,"abstract":"Named entity recognition (NER) research has been spreading into specialty domains. A specialty domain corpus is smaller than a general domain corpus. Moreover, annotating a specialty domain corpus is more expensive than annotating a general corpus. Therefore, in this paper, we introduce a model that uses point-wise prediction and active learning to achieve a high extraction performance even in a small annotation corpus. We demonstrate the effectiveness of our approach through a simulation of active learning.","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Named entity recognition (NER) research has been spreading into specialty domains. A specialty domain corpus is smaller than a general domain corpus. Moreover, annotating a specialty domain corpus is more expensive than annotating a general corpus. Therefore, in this paper, we introduce a model that uses point-wise prediction and active learning to achieve a high extraction performance even in a small annotation corpus. We demonstrate the effectiveness of our approach through a simulation of active learning.
使用点预测和主动学习的命名实体识别
命名实体识别(NER)的研究已经扩展到专业领域。专业领域语料库比一般领域语料库小。此外,注释专业领域语料库比注释一般语料库要昂贵得多。因此,在本文中,我们引入了一种使用逐点预测和主动学习的模型,即使在较小的标注语料库中也能获得较高的提取性能。我们通过模拟主动学习来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信