Automatic Event Log Abstraction to Support Forensic Investigation

H. Studiawan, F. Sohel, Christian N. Payne
{"title":"Automatic Event Log Abstraction to Support Forensic Investigation","authors":"H. Studiawan, F. Sohel, Christian N. Payne","doi":"10.1145/3373017.3373018","DOIUrl":null,"url":null,"abstract":"Abstraction of event logs is the creation of a template that contains the most common words representing all members in a group of event log entries. Abstraction helps the forensic investigators to obtain an overall view of the main events in a log file. Existing log abstraction methods require user input parameters. This manual input is time consuming due to the need to identify the best parameters, especially when a log file is large. We propose an automatic method to facilitate event log abstraction avoiding the need for the user to manually identify suitable parameters. We model event logs as a graph and propose a new graph clustering approach to group log entries. The abstraction is then extracted from each cluster. Experimental results show that the proposed method achieves superior performance compared to existing approaches with an F-measure of 95.35%.","PeriodicalId":297760,"journal":{"name":"Proceedings of the Australasian Computer Science Week Multiconference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Australasian Computer Science Week Multiconference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373017.3373018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Abstraction of event logs is the creation of a template that contains the most common words representing all members in a group of event log entries. Abstraction helps the forensic investigators to obtain an overall view of the main events in a log file. Existing log abstraction methods require user input parameters. This manual input is time consuming due to the need to identify the best parameters, especially when a log file is large. We propose an automatic method to facilitate event log abstraction avoiding the need for the user to manually identify suitable parameters. We model event logs as a graph and propose a new graph clustering approach to group log entries. The abstraction is then extracted from each cluster. Experimental results show that the proposed method achieves superior performance compared to existing approaches with an F-measure of 95.35%.
支持法医调查的自动事件日志抽象
事件日志的抽象是创建一个模板,该模板包含代表一组事件日志条目中所有成员的最常用单词。抽象帮助取证调查人员获得日志文件中主要事件的总体视图。现有的日志抽象方法需要用户输入参数。由于需要识别最佳参数,特别是当日志文件很大时,这种手动输入非常耗时。我们提出了一种自动化的方法来促进事件日志的抽象,避免了用户手动识别合适的参数的需要。我们将事件日志建模为一个图,并提出了一种新的图聚类方法来对日志条目进行分组。然后从每个集群中提取抽象。实验结果表明,与现有方法相比,该方法取得了更好的性能,f -度量值为95.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信