Robust M-ary detection filters for continuous-time jump Markov systems

R. Elliott, W. P. Malcolm
{"title":"Robust M-ary detection filters for continuous-time jump Markov systems","authors":"R. Elliott, W. P. Malcolm","doi":"10.1109/CDC.2001.981143","DOIUrl":null,"url":null,"abstract":"In this article we consider a dynamic M-ary detection problem when Markov chains are observed through a Wiener process. These systems are fully specified by a candidate set of parameters, whose elements are: a rate matrix for the Markov chain and a parameter for the observation model. Further, we suppose these parameter sets can switch according to the state of an unobserved Markov chain and thereby produce an observation process generated by time varying (jump stochastic) parameter sets. We estimate the probabilities of each model parameter set explaining the observation. Using the gauge transformation techniques introduced by Clark (1977) and a pointwise matrix product, we compute robust matrix-valued dynamics for the joint probabilities on the augmented state space. In these new dynamics the observation Wiener process appears as a parameter in the fundamental matrix of a linear ordinary differential equation, rather than an integrator in a stochastic integral equation. Finally, by exploiting a duality between causal and anticausal robust detector dynamics, we develop an algorithm to compute smoothed mode probability estimates without stochastic integrations.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.981143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we consider a dynamic M-ary detection problem when Markov chains are observed through a Wiener process. These systems are fully specified by a candidate set of parameters, whose elements are: a rate matrix for the Markov chain and a parameter for the observation model. Further, we suppose these parameter sets can switch according to the state of an unobserved Markov chain and thereby produce an observation process generated by time varying (jump stochastic) parameter sets. We estimate the probabilities of each model parameter set explaining the observation. Using the gauge transformation techniques introduced by Clark (1977) and a pointwise matrix product, we compute robust matrix-valued dynamics for the joint probabilities on the augmented state space. In these new dynamics the observation Wiener process appears as a parameter in the fundamental matrix of a linear ordinary differential equation, rather than an integrator in a stochastic integral equation. Finally, by exploiting a duality between causal and anticausal robust detector dynamics, we develop an algorithm to compute smoothed mode probability estimates without stochastic integrations.
连续时间跳变马尔可夫系统的鲁棒m -玛利检测滤波器
本文研究了通过维纳过程观察马尔可夫链时的动态M-ary检测问题。这些系统完全由一组候选参数指定,其元素是:马尔可夫链的速率矩阵和观测模型的参数。进一步,我们假设这些参数集可以根据未观测马尔可夫链的状态进行切换,从而产生由时变(跳变随机)参数集生成的观测过程。我们估计解释观测值的每个模型参数集的概率。利用Clark(1977)引入的规范变换技术和点向矩阵积,我们计算了增广状态空间上联合概率的鲁棒矩阵值动力学。在这些新的动力学中,观测维纳过程作为一个参数出现在线性常微分方程的基本矩阵中,而不是随机积分方程中的积分器。最后,通过利用因果和反因果鲁棒检测器动力学之间的对偶性,我们开发了一种算法来计算没有随机积分的平滑模式概率估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信