FBG refractometry and electrical impedance analysis in fuel samples characterization

L. Negri, Guilherme Zilli, Cleberson da Cunha, A. Ramos, H. Kalinowski, J. L. Fabris, A. Paterno
{"title":"FBG refractometry and electrical impedance analysis in fuel samples characterization","authors":"L. Negri, Guilherme Zilli, Cleberson da Cunha, A. Ramos, H. Kalinowski, J. L. Fabris, A. Paterno","doi":"10.1109/IMOC.2011.6169329","DOIUrl":null,"url":null,"abstract":"This work reports the simultaneous use of electrical impedance spectroscopy and fiber Bragg grating (FBG) refractive index sensing in the estimation of the main components of specific fuel mixtures. Fuel samples containing gasoline, dehydrated ethanol, diesel, and kerosene were analyzed. Electrical impedance spectra and FBG sensor signals were registered for each mixture. Artificial Neural Networks (ANN) were used to estimate the ethanol concentration using the information from both sensors separately and to illustrate the methodology of fusing data from sensors that measure electrical permittivity at different frequency ranges, namely, an electrical impedance sensor and the etched FBG refractometric sensor. The behavior of the ANN to fuse data and the individual analysis of the sensor signals indicated that the joint use of the proposed techniques enhance the fuel estimation quality when compared to the usage of a singleton sensor.","PeriodicalId":179351,"journal":{"name":"2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2011.6169329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work reports the simultaneous use of electrical impedance spectroscopy and fiber Bragg grating (FBG) refractive index sensing in the estimation of the main components of specific fuel mixtures. Fuel samples containing gasoline, dehydrated ethanol, diesel, and kerosene were analyzed. Electrical impedance spectra and FBG sensor signals were registered for each mixture. Artificial Neural Networks (ANN) were used to estimate the ethanol concentration using the information from both sensors separately and to illustrate the methodology of fusing data from sensors that measure electrical permittivity at different frequency ranges, namely, an electrical impedance sensor and the etched FBG refractometric sensor. The behavior of the ANN to fuse data and the individual analysis of the sensor signals indicated that the joint use of the proposed techniques enhance the fuel estimation quality when compared to the usage of a singleton sensor.
燃料样品表征中的光纤光栅折射法和电阻抗分析
这项工作报道了同时使用电阻抗谱和光纤布拉格光栅(FBG)折射率传感来估计特定燃料混合物的主要成分。对含有汽油、脱水乙醇、柴油和煤油的燃料样品进行了分析。对每种混合物的阻抗谱和光纤光栅传感器信号进行了登记。使用人工神经网络(ANN)分别使用来自两个传感器的信息来估计乙醇浓度,并说明融合来自不同频率范围内测量介电常数的传感器的数据的方法,即电阻抗传感器和蚀刻FBG折射传感器。人工神经网络融合数据的行为和对传感器信号的单独分析表明,与使用单一传感器相比,联合使用所提出的技术提高了燃料估计质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信