Trash Classification Network Based on Attention Mechanism

Minghui Fan, Lei Xiao, Xiang-zhen He, Yawei Chen
{"title":"Trash Classification Network Based on Attention Mechanism","authors":"Minghui Fan, Lei Xiao, Xiang-zhen He, Yawei Chen","doi":"10.1109/ICACTE55855.2022.9943600","DOIUrl":null,"url":null,"abstract":"The classification and recycling of garbage can greatly improve the utilization of garbage resources. This paper proposes a new convolutional neural network that fuses a multi-branch Xception network with an attention mechanism module. The effective feature information is emphasized and the invalid information is suppressed to overcome the problem caused by the small data set. To verify the usefulness of this network structure in the field of garbage images, this paper uses a widely used data set in the field of garbage image classification. For any network without pre-trained weights, the network proposed in this paper outperforms all other methods by 94.4%.","PeriodicalId":165068,"journal":{"name":"2022 15th International Conference on Advanced Computer Theory and Engineering (ICACTE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 15th International Conference on Advanced Computer Theory and Engineering (ICACTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE55855.2022.9943600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The classification and recycling of garbage can greatly improve the utilization of garbage resources. This paper proposes a new convolutional neural network that fuses a multi-branch Xception network with an attention mechanism module. The effective feature information is emphasized and the invalid information is suppressed to overcome the problem caused by the small data set. To verify the usefulness of this network structure in the field of garbage images, this paper uses a widely used data set in the field of garbage image classification. For any network without pre-trained weights, the network proposed in this paper outperforms all other methods by 94.4%.
基于注意力机制的垃圾分类网络
垃圾的分类和回收可以大大提高垃圾资源的利用率。本文提出了一种融合多分支异常网络和注意机制模块的新型卷积神经网络。强调有效的特征信息,抑制无效信息,克服了数据集小的问题。为了验证该网络结构在垃圾图像领域的实用性,本文使用了垃圾图像分类领域中广泛使用的数据集。对于任何没有预训练权值的网络,本文提出的网络优于所有其他方法94.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信