{"title":"Radiative cooling for concentrating photovoltaics (Conference Presentation)","authors":"P. Bermel","doi":"10.1117/12.2532033","DOIUrl":null,"url":null,"abstract":"Radiative cooling is a uniquely compact and passive cooling mechanism. Significant applications can be found in energy generation, particularly concentrating photovoltaics (CPV) and thermophotovoltaics (TPV). Both rely on low-bandgap PV cells that experience significant reductions in performance and lifetime when operating at elevated temperatures. This issue creates a significant barrier to widespread adoption. To address this challenge, we demonstrate enhanced radiative cooling for low-bandgap PV cells under concentrated sunlight for the first time. A composite material stack is used as the radiative cooler. Enhanced radiative cooling reduces operating temperatures by 10 degrees C, translating into a relative increase of 5.7% in open-circuit voltage and an estimated increase of 40% in lifetime at 13 suns. Using a model, we also estimate the same setup could achieve an improvement of 34% in open-circuit voltage for 35 suns, which could reduce levelized costs of energy up to 33% for high activation energy failure modes. The radiative cooling enhancement demonstrated here is a simple and straightforward approach, which can be generalized to other optoelectronic systems.","PeriodicalId":374404,"journal":{"name":"New Concepts in Solar and Thermal Radiation Conversion II","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Concepts in Solar and Thermal Radiation Conversion II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2532033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Radiative cooling is a uniquely compact and passive cooling mechanism. Significant applications can be found in energy generation, particularly concentrating photovoltaics (CPV) and thermophotovoltaics (TPV). Both rely on low-bandgap PV cells that experience significant reductions in performance and lifetime when operating at elevated temperatures. This issue creates a significant barrier to widespread adoption. To address this challenge, we demonstrate enhanced radiative cooling for low-bandgap PV cells under concentrated sunlight for the first time. A composite material stack is used as the radiative cooler. Enhanced radiative cooling reduces operating temperatures by 10 degrees C, translating into a relative increase of 5.7% in open-circuit voltage and an estimated increase of 40% in lifetime at 13 suns. Using a model, we also estimate the same setup could achieve an improvement of 34% in open-circuit voltage for 35 suns, which could reduce levelized costs of energy up to 33% for high activation energy failure modes. The radiative cooling enhancement demonstrated here is a simple and straightforward approach, which can be generalized to other optoelectronic systems.