Flexible Object Models for Category-Level 3D Object Recognition

Akash M. Kushal, C. Schmid, J. Ponce
{"title":"Flexible Object Models for Category-Level 3D Object Recognition","authors":"Akash M. Kushal, C. Schmid, J. Ponce","doi":"10.1109/CVPR.2007.383149","DOIUrl":null,"url":null,"abstract":"Today's category-level object recognition systems largely focus on fronto-parallel views of objects with characteristic texture patterns. To overcome these limitations, we propose a novel framework for visual object recognition where object classes are represented by assemblies of partial surface models (PSMs) obeying loose local geometric constraints. The PSMs themselves are formed of dense, locally rigid assemblies of image features. Since our model only enforces local geometric consistency, both at the level of model parts and at the level of individual features within the parts, it is robust to viewpoint changes and intra-class variability. The proposed approach has been implemented, and it outperforms the state-of-the-art algorithms for object detection and localization recently compared in [14] on the Pascal 2005 VOC Challenge Cars Test 1 data.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

Today's category-level object recognition systems largely focus on fronto-parallel views of objects with characteristic texture patterns. To overcome these limitations, we propose a novel framework for visual object recognition where object classes are represented by assemblies of partial surface models (PSMs) obeying loose local geometric constraints. The PSMs themselves are formed of dense, locally rigid assemblies of image features. Since our model only enforces local geometric consistency, both at the level of model parts and at the level of individual features within the parts, it is robust to viewpoint changes and intra-class variability. The proposed approach has been implemented, and it outperforms the state-of-the-art algorithms for object detection and localization recently compared in [14] on the Pascal 2005 VOC Challenge Cars Test 1 data.
面向类别级三维对象识别的柔性对象模型
目前的分类级对象识别系统主要集中在具有特征纹理模式的对象的正面平行视图上。为了克服这些限制,我们提出了一种新的视觉对象识别框架,其中对象类由服从松散局部几何约束的部分表面模型(psm)的集合表示。psm本身由密集的、局部刚性的图像特征组合而成。由于我们的模型只强制局部几何一致性,无论是在模型部件的水平上还是在部件内的单个特征的水平上,它对视点变化和类内可变性都是鲁棒的。所提出的方法已经实现,并且最近在Pascal 2005 VOC挑战汽车测试1数据上与[14]相比,它优于最先进的对象检测和定位算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信