Mixture of experts applied to nonlinear dynamic systems identification: a comparative study

C. Lima, André L. V. Coelho, F. V. Zuben
{"title":"Mixture of experts applied to nonlinear dynamic systems identification: a comparative study","authors":"C. Lima, André L. V. Coelho, F. V. Zuben","doi":"10.1109/SBRN.2002.1181463","DOIUrl":null,"url":null,"abstract":"A mixture of experts (ME) model provides a modular approach wherein component neural networks are made specialists on subparts of a problem. In this framework, that follows the \"divide-and-conquer\" philosophy, a gating network learns how to softly partition the input space into regions to be each properly modeled by one or more expert networks. In this paper, we investigate the application of different ME variants to some multivariate nonlinear dynamic systems identification problems which are known to be difficult to be dealt with. The aim is to provide a comparative performance analysis between variable settings of the standard, gated, and localized ME models with more conventional NN models.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A mixture of experts (ME) model provides a modular approach wherein component neural networks are made specialists on subparts of a problem. In this framework, that follows the "divide-and-conquer" philosophy, a gating network learns how to softly partition the input space into regions to be each properly modeled by one or more expert networks. In this paper, we investigate the application of different ME variants to some multivariate nonlinear dynamic systems identification problems which are known to be difficult to be dealt with. The aim is to provide a comparative performance analysis between variable settings of the standard, gated, and localized ME models with more conventional NN models.
混合专家在非线性动力系统辨识中的应用:比较研究
混合专家(ME)模型提供了一种模块化方法,其中组件神经网络成为问题子部分的专家。在这个框架中,它遵循“分而治之”的哲学,一个门控网络学习如何将输入空间温和地划分为区域,每个区域由一个或多个专家网络适当地建模。在本文中,我们研究了不同ME变量在一些已知难以处理的多变量非线性动态系统辨识问题中的应用。目的是在标准、门控和本地化的ME模型的变量设置与更传统的神经网络模型之间提供比较性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信