A Multi-Target Tracking and Positioning Technology for UAV Based on Siamrpn Algorithm

Ligang Wu, Changxing Zhao, Zushan Ding, Xiao Zhang, Yiding Wang, Yang Li
{"title":"A Multi-Target Tracking and Positioning Technology for UAV Based on Siamrpn Algorithm","authors":"Ligang Wu, Changxing Zhao, Zushan Ding, Xiao Zhang, Yiding Wang, Yang Li","doi":"10.1109/PHM2022-London52454.2022.00086","DOIUrl":null,"url":null,"abstract":"UAV s play a pivotal role in the field of security due to their flexibility, high efficiency, and low cost. This article uses yolov4 convolutional neural network technology to achieve the target detection process of power inspection photos. First, use labelimg to accurately label the power inspection training data set, and then use the fusion target detection network yolov4 and the detection-based multi-target tracking algorithm DeepSORT to address the problem of UAV positioning the target. Use the SiamRPN algorithm to achieve high-precision positioning to meet the needs of power inspection services and quickly identify targets in batches.","PeriodicalId":269605,"journal":{"name":"2022 Prognostics and Health Management Conference (PHM-2022 London)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Prognostics and Health Management Conference (PHM-2022 London)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM2022-London52454.2022.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

UAV s play a pivotal role in the field of security due to their flexibility, high efficiency, and low cost. This article uses yolov4 convolutional neural network technology to achieve the target detection process of power inspection photos. First, use labelimg to accurately label the power inspection training data set, and then use the fusion target detection network yolov4 and the detection-based multi-target tracking algorithm DeepSORT to address the problem of UAV positioning the target. Use the SiamRPN algorithm to achieve high-precision positioning to meet the needs of power inspection services and quickly identify targets in batches.
基于Siamrpn算法的无人机多目标跟踪定位技术
无人机以其灵活、高效、低成本的特点在安全领域发挥着举足轻重的作用。本文采用yolov4卷积神经网络技术实现对电力巡检照片的目标检测过程。首先利用标记技术对电力巡检训练数据集进行精确标记,然后利用融合目标检测网络yolov4和基于检测的多目标跟踪算法DeepSORT解决无人机对目标的定位问题。采用SiamRPN算法实现高精度定位,满足电力巡检业务需求,快速批量识别目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信