H. J. Shin, R. Narayanan, Mark A. Asmuth, M. Rangaswamy
{"title":"Ultrawideband Noise Radar Tomography: Principles, Simulation, and Experimental Validation","authors":"H. J. Shin, R. Narayanan, Mark A. Asmuth, M. Rangaswamy","doi":"10.1155/2016/5787895","DOIUrl":null,"url":null,"abstract":"The paper introduces the principles, simulation results, and hardware implementation of ultrawideband (UWB) noise radar for obtaining tomographic images of various scenarios of rotating cylindrical objects using independent and identically distributed UWB noise waveforms. A UWB noise radar was designed to transmit multiple UWB random noise waveforms over the 3–5 GHz frequency range and to measure the backward scattering data for the validation of the theoretical analysis and numerical simulation results. The reconstructed tomographic images of the rotating cylindrical objects based on experimental results are seen to be in good agreement with the simulation results, which demonstrates the capability of UWB noise radar for complete two-dimensional tomographic image reconstruction of various shaped metallic and dielectric target objects.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/5787895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The paper introduces the principles, simulation results, and hardware implementation of ultrawideband (UWB) noise radar for obtaining tomographic images of various scenarios of rotating cylindrical objects using independent and identically distributed UWB noise waveforms. A UWB noise radar was designed to transmit multiple UWB random noise waveforms over the 3–5 GHz frequency range and to measure the backward scattering data for the validation of the theoretical analysis and numerical simulation results. The reconstructed tomographic images of the rotating cylindrical objects based on experimental results are seen to be in good agreement with the simulation results, which demonstrates the capability of UWB noise radar for complete two-dimensional tomographic image reconstruction of various shaped metallic and dielectric target objects.