Multi-sample Compression of Finger Vein Images using H.265 Video Coding

Kevin Schörgnhofer, Sami Dafir, A. Uhl
{"title":"Multi-sample Compression of Finger Vein Images using H.265 Video Coding","authors":"Kevin Schörgnhofer, Sami Dafir, A. Uhl","doi":"10.1109/ICB45273.2019.8987412","DOIUrl":null,"url":null,"abstract":"A new video-compression based approach extending traditional biometric sample data compression techniques is evaluated in the context of finger vein recognition. The proposed scheme is implemented in HEVC / H.265 in different settings and compared to (i) compressing each sample individually with JPEG2000 according to ISO/IEC 19794-9:2011 and to (ii) compressing each users’ data into an individual video file. Compression efficiency and implications on recognition accuracy are determined using 4 recognition schemes and 2 data sets, both based on publicly available data. Results obtained using the proposed approach are fairly stable across different recognition schemes and data sets and indicate a significant improvement over the current state of the art.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new video-compression based approach extending traditional biometric sample data compression techniques is evaluated in the context of finger vein recognition. The proposed scheme is implemented in HEVC / H.265 in different settings and compared to (i) compressing each sample individually with JPEG2000 according to ISO/IEC 19794-9:2011 and to (ii) compressing each users’ data into an individual video file. Compression efficiency and implications on recognition accuracy are determined using 4 recognition schemes and 2 data sets, both based on publicly available data. Results obtained using the proposed approach are fairly stable across different recognition schemes and data sets and indicate a significant improvement over the current state of the art.
基于H.265视频编码的手指静脉图像多样本压缩
在手指静脉识别的背景下,研究了一种基于视频压缩的新方法,扩展了传统的生物特征样本数据压缩技术。提出的方案在不同设置的HEVC / H.265中实现,并比较了(i)根据ISO/IEC 19794-9:2011使用JPEG2000单独压缩每个样本和(ii)将每个用户的数据压缩到单个视频文件中。压缩效率和对识别精度的影响使用4种识别方案和2个数据集,均基于公开可用的数据。使用所提出的方法获得的结果在不同的识别方案和数据集上相当稳定,并且表明比当前技术状态有了显着改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信