PRONÓSTICO DE DEMANDA DE ENERGÍA ELÉCTRICA USANDO PROCESOS GAUSSIANOS: UN ANÁLISIS COMPARATIVO

J. Muñoz, C. D. Zuluaga
{"title":"PRONÓSTICO DE DEMANDA DE ENERGÍA ELÉCTRICA USANDO PROCESOS GAUSSIANOS: UN ANÁLISIS COMPARATIVO","authors":"J. Muñoz, C. D. Zuluaga","doi":"10.23850/25007211.3748","DOIUrl":null,"url":null,"abstract":"Abstract—Load demand forecasting is an essential component for planning power systems, and it is an invaluable tool to grid operators or customers. Many methods have been proposed to provide reliable estimates of electric load demand, but few methods can address the problem of predicting energy demand from a probabilistic point of view. One of them is the Gaussian processes (GP) that considering an adequate covariance function are suitable tools to carry out this load forecasting task. In this article, we show how to use Gaussian processes to predict elec- trical energy demand. Additionally, we thoroughly test various covariance functions and provide a new one. The performance of the proposed methodology was tested on two real data sets, showing that GPs are competitive alternatives for short-term load demand forecasting compared to other state-of-the-art methods","PeriodicalId":346540,"journal":{"name":"Revista Teinnova","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Teinnova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23850/25007211.3748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract—Load demand forecasting is an essential component for planning power systems, and it is an invaluable tool to grid operators or customers. Many methods have been proposed to provide reliable estimates of electric load demand, but few methods can address the problem of predicting energy demand from a probabilistic point of view. One of them is the Gaussian processes (GP) that considering an adequate covariance function are suitable tools to carry out this load forecasting task. In this article, we show how to use Gaussian processes to predict elec- trical energy demand. Additionally, we thoroughly test various covariance functions and provide a new one. The performance of the proposed methodology was tested on two real data sets, showing that GPs are competitive alternatives for short-term load demand forecasting compared to other state-of-the-art methods
利用高斯过程预测电能需求:比较分析
负荷需求预测是电力系统规划的重要组成部分,是电网运营商或用户的宝贵工具。已经提出了许多方法来提供可靠的电力负荷需求估计,但很少有方法可以从概率的角度来解决预测能源需求的问题。其中一种方法是高斯过程(GP),它考虑了适当的协方差函数,是完成负荷预测任务的合适工具。在这篇文章中,我们展示了如何使用高斯过程来预测电能需求。此外,我们对各种协方差函数进行了全面的测试,并提供了一个新的协方差函数。在两个真实数据集上测试了所提出方法的性能,表明与其他最先进的方法相比,GPs是短期负荷需求预测的有竞争力的替代方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信