Linear Quadratic Tracker with Integrator using Integral Reinforcement Learning

On Park, Hyo-Sang Shin, A. Tsourdos
{"title":"Linear Quadratic Tracker with Integrator using Integral Reinforcement Learning","authors":"On Park, Hyo-Sang Shin, A. Tsourdos","doi":"10.1109/REDUAS47371.2019.8999679","DOIUrl":null,"url":null,"abstract":"This paper describes a Reinforcement Learning (RL) application using Linear Quadratic Regulator (LQR) based tracking controller, which is augmented with a tracking error term. In order to deal with the steady-state errors, Linear Quadratic Tracker with Integrator (LQTI) is designed by adding an integration term of the tracking error in the state variable. Based on the LQTI, an online learning using the Integral Reinforcement Learning (IRL) is applied for the tracking problem to find the optimal control on the partially unknown continuous-time systems by regulating the augmented state variable. The optimal control solution and the performance of the method are verified through numerical simulation on two applications.","PeriodicalId":351115,"journal":{"name":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDUAS47371.2019.8999679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a Reinforcement Learning (RL) application using Linear Quadratic Regulator (LQR) based tracking controller, which is augmented with a tracking error term. In order to deal with the steady-state errors, Linear Quadratic Tracker with Integrator (LQTI) is designed by adding an integration term of the tracking error in the state variable. Based on the LQTI, an online learning using the Integral Reinforcement Learning (IRL) is applied for the tracking problem to find the optimal control on the partially unknown continuous-time systems by regulating the augmented state variable. The optimal control solution and the performance of the method are verified through numerical simulation on two applications.
基于积分强化学习的线性二次跟踪器
本文描述了一种基于线性二次调节器(LQR)的跟踪控制器的强化学习(RL)应用,该控制器增加了跟踪误差项。为了处理稳态误差,在状态变量中加入跟踪误差的积分项,设计了带积分的线性二次跟踪器(LQTI)。在LQTI的基础上,利用积分强化学习(IRL)的在线学习方法,通过调节增广状态变量,找到部分未知连续系统的最优控制。通过两个应用的数值仿真验证了该方法的最优控制解和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信