An analog network approach to train RBF networks based on sparse recovery

Ruibin Feng, A. Leung, A. Constantinides
{"title":"An analog network approach to train RBF networks based on sparse recovery","authors":"Ruibin Feng, A. Leung, A. Constantinides","doi":"10.1109/ICDSP.2014.6900799","DOIUrl":null,"url":null,"abstract":"The local competition algorithm (LCA) is an analog neural approach for compressed sensing. It is used to recover a sparse signal from a set of measurements. Unlike some traditional numerical methods that produce many elements with small magnitude, the LCA automatically set those unimportant elements to zero. This paper formulates the training process of radial basis function (RBF) networks as a compressed sensing problem. We then apply the LCA to train RBF networks. The proposed LCA-RBF approach can select important RBF nodes during training. Since the proposed approach can limit the magnitude of the trained weight, it also has certain ability to handle RBF networks with multiplicative weight noise.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The local competition algorithm (LCA) is an analog neural approach for compressed sensing. It is used to recover a sparse signal from a set of measurements. Unlike some traditional numerical methods that produce many elements with small magnitude, the LCA automatically set those unimportant elements to zero. This paper formulates the training process of radial basis function (RBF) networks as a compressed sensing problem. We then apply the LCA to train RBF networks. The proposed LCA-RBF approach can select important RBF nodes during training. Since the proposed approach can limit the magnitude of the trained weight, it also has certain ability to handle RBF networks with multiplicative weight noise.
基于稀疏恢复的RBF网络训练模拟网络方法
局部竞争算法(LCA)是一种用于压缩感知的模拟神经算法。它用于从一组测量中恢复稀疏信号。与一些传统数值方法产生许多小幅度的元素不同,LCA将那些不重要的元素自动置零。本文将径向基函数(RBF)网络的训练过程描述为一个压缩感知问题。然后我们应用LCA来训练RBF网络。提出的LCA-RBF方法可以在训练过程中选择重要的RBF节点。由于该方法可以限制训练权值的大小,因此对具有乘性权噪声的RBF网络也有一定的处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信