Degree complexity of Boolean functions and its applications to relativized separations

J. Tarui
{"title":"Degree complexity of Boolean functions and its applications to relativized separations","authors":"J. Tarui","doi":"10.1109/SCT.1991.160282","DOIUrl":null,"url":null,"abstract":"It is shown that a simple function in AC/sup 0/, OR of square root n disjoint ANDs, cannot be computed by decision trees of depth log/sup O(1)/n where each node asks whether or not p(x/sub 1/, . . .,x/sub n/)=0 for some polynomial p of degree log/sup O(1)/n. This is in contrast to recent results that every function in AC/sup 0/ can be computed probabilistically by just one such query and can be deterministically computed by such decision trees if each node asks whether or not p(x/sub 1/, . . .,x/sub n/)>0. The proofs are based on simple algebraic arguments that also provide alternative proofs for some known results.<<ETX>>","PeriodicalId":158682,"journal":{"name":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1991.160282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

It is shown that a simple function in AC/sup 0/, OR of square root n disjoint ANDs, cannot be computed by decision trees of depth log/sup O(1)/n where each node asks whether or not p(x/sub 1/, . . .,x/sub n/)=0 for some polynomial p of degree log/sup O(1)/n. This is in contrast to recent results that every function in AC/sup 0/ can be computed probabilistically by just one such query and can be deterministically computed by such decision trees if each node asks whether or not p(x/sub 1/, . . .,x/sub n/)>0. The proofs are based on simple algebraic arguments that also provide alternative proofs for some known results.<>
布尔函数的复杂度及其在相对分离中的应用
结果表明,对于某个log/sup O(1)/n阶多项式p,每个节点都询问p(x/下标1/,…,x/下标n/)是否=0的深度log/sup O(1)/n的决策树,不能计算出AC/sup 0/中的一个简单函数,即√n不相交的OR。这与最近的结果相反,AC/sup 0/中的每个函数都可以通过一个这样的查询进行概率计算,并且如果每个节点都询问p(x/下标1/,…,x/下标n/)是否>0,则可以通过这样的决策树进行确定性计算。证明是基于简单的代数论证,也为一些已知的结果提供了替代的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信