Fast acting linear AC voltage regulator for consumer applications: Implementation options

Priyanwada Nimesha Wijesooriya, N. Kularatna, J. Fernando, D. Steyn-Ross
{"title":"Fast acting linear AC voltage regulator for consumer applications: Implementation options","authors":"Priyanwada Nimesha Wijesooriya, N. Kularatna, J. Fernando, D. Steyn-Ross","doi":"10.1109/IESES.2018.8349888","DOIUrl":null,"url":null,"abstract":"RMS line voltage fluctuation is a very well-known problem in AC power conditioning. Traditional techniques to handle this power quality issue are (i) motor-driven variacs, (ii) ferro-resonant regulators, (iii) transformer tap changers, (iv) solid-state regulators. Each of these techniques has disadvantages such as (a) flattened-top output and low efficiency, (b) bulky and slow response, (c) switch change-over related issues, (d) output waveform distortion due to RFI/EMI respectively. Linear AC regulator technique covered under a new US patent is a fifth method to solve this RMS voltage fluctuation issue, based on a power semiconductor array. One disadvantage was the low efficiency when the input line voltage exceeds the nominal value. While developing a 2kVA commercial prototype, the authors were able to come-up with two cost-saving design options by using (i) two smaller low-cost transformers combined in series and a (ii)multi-winding transformer with two primaries combined in a novel topology. This paper discusses the design concepts and implementation aspects of these new techniques, comparing their unique advantages as opposed to a single buck-boost transformer.","PeriodicalId":146951,"journal":{"name":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESES.2018.8349888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

RMS line voltage fluctuation is a very well-known problem in AC power conditioning. Traditional techniques to handle this power quality issue are (i) motor-driven variacs, (ii) ferro-resonant regulators, (iii) transformer tap changers, (iv) solid-state regulators. Each of these techniques has disadvantages such as (a) flattened-top output and low efficiency, (b) bulky and slow response, (c) switch change-over related issues, (d) output waveform distortion due to RFI/EMI respectively. Linear AC regulator technique covered under a new US patent is a fifth method to solve this RMS voltage fluctuation issue, based on a power semiconductor array. One disadvantage was the low efficiency when the input line voltage exceeds the nominal value. While developing a 2kVA commercial prototype, the authors were able to come-up with two cost-saving design options by using (i) two smaller low-cost transformers combined in series and a (ii)multi-winding transformer with two primaries combined in a novel topology. This paper discusses the design concepts and implementation aspects of these new techniques, comparing their unique advantages as opposed to a single buck-boost transformer.
用于消费者应用的快速作用线性交流稳压器:实施方案
有效值线电压波动是交流电源调节中一个众所周知的问题。处理这种电能质量问题的传统技术是(i)电机驱动的变换器,(ii)铁谐振调节器,(iii)变压器分接开关,(iv)固态调节器。这些技术都有缺点,如(a)顶部平坦输出和低效率,(b)体积大,响应慢,(c)开关转换相关问题,(d)分别由RFI/EMI引起的输出波形失真。根据一项新的美国专利,线性交流稳压器技术是解决RMS电压波动问题的第五种方法,该方法基于功率半导体阵列。一个缺点是当输入电压超过标称值时效率低。在开发2kVA商业原型时,作者能够通过使用(i)串联两个较小的低成本变压器和(ii)在新型拓扑结构中组合两个初级的多绕组变压器来节省成本。本文讨论了这些新技术的设计概念和实现方面,比较了它们相对于单一降压-升压变压器的独特优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信