Effective Distance based Low Rank Representation for Image Classification

Tianzeng Tao, De-Yun Yang, Lin-Lin Wang, Ming-Xia Liu
{"title":"Effective Distance based Low Rank Representation for Image Classification","authors":"Tianzeng Tao, De-Yun Yang, Lin-Lin Wang, Ming-Xia Liu","doi":"10.1109/SPAC46244.2018.8965492","DOIUrl":null,"url":null,"abstract":"Low-rank representation (LRR) has recently attracted a great deal of attention due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. However, conventional LRR methods simply use Euclidean distance to measure the similarity of samples, ignoring the dynamic structure information of data. Meanwhile, recent studies have shown that a probabilistically motivated distance measurement (called effective distance) can model the dynamic structure information of data. In this paper, we propose an effective distance based LRR (EDLRR)method for representation learning. The proposed EDLRR method can not only represent the dynamic structure of data, but also capture the geometric information in the inherent nonlinear data. Our method mainly uses Effective Distance Computation and Effective Distance based Low-Rank Representation. We evaluate our method on datasets in the task of image classification, with results demonstrating the effectiveness of the method.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-rank representation (LRR) has recently attracted a great deal of attention due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. However, conventional LRR methods simply use Euclidean distance to measure the similarity of samples, ignoring the dynamic structure information of data. Meanwhile, recent studies have shown that a probabilistically motivated distance measurement (called effective distance) can model the dynamic structure information of data. In this paper, we propose an effective distance based LRR (EDLRR)method for representation learning. The proposed EDLRR method can not only represent the dynamic structure of data, but also capture the geometric information in the inherent nonlinear data. Our method mainly uses Effective Distance Computation and Effective Distance based Low-Rank Representation. We evaluate our method on datasets in the task of image classification, with results demonstrating the effectiveness of the method.
基于有效距离的图像分类低秩表示
低秩表示(LRR)由于其在探索嵌入在数据中的低维子空间结构方面的令人满意的效果,近年来引起了人们的广泛关注。然而,传统的LRR方法只是简单地使用欧几里德距离来度量样本的相似性,忽略了数据的动态结构信息。同时,近年来的研究表明,一种概率驱动的距离测量(称为有效距离)可以对数据的动态结构信息进行建模。本文提出了一种有效的基于距离的LRR (EDLRR)表示学习方法。所提出的EDLRR方法既能表示数据的动态结构,又能捕获固有非线性数据中的几何信息。该方法主要采用有效距离计算和基于有效距离的低秩表示。我们在图像分类任务的数据集上评估了我们的方法,结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信