SHREC—08 entry: Local 2D visual features for CAD Model retrieval

Kunio Osada, T. Furuya, Ryutarou Ohbuchi
{"title":"SHREC—08 entry: Local 2D visual features for CAD Model retrieval","authors":"Kunio Osada, T. Furuya, Ryutarou Ohbuchi","doi":"10.1109/SMI.2008.4547985","DOIUrl":null,"url":null,"abstract":"A local shape feature has an advantage in dealing with deformable or articulated 3D models. We evaluate the performance of our local, 2D visual features and their integration method based on the bag-of-features approach using the SHREC'08 CAD model track. The evaluation showed that, it performed very well, winning the 2nd place in the contest, although it lost to a method that employs supervised learning of classes in the benchmark dataset.","PeriodicalId":118774,"journal":{"name":"2008 IEEE International Conference on Shape Modeling and Applications","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Shape Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2008.4547985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A local shape feature has an advantage in dealing with deformable or articulated 3D models. We evaluate the performance of our local, 2D visual features and their integration method based on the bag-of-features approach using the SHREC'08 CAD model track. The evaluation showed that, it performed very well, winning the 2nd place in the contest, although it lost to a method that employs supervised learning of classes in the benchmark dataset.
shrec08条目:用于CAD模型检索的局部2D视觉特征
局部形状特征在处理可变形或铰接的3D模型方面具有优势。我们使用SHREC'08 CAD模型轨迹评估了我们的局部2D视觉特征及其基于特征袋方法的集成方法的性能。评估表明,它的表现非常好,在比赛中获得了第二名,尽管它输给了在基准数据集中使用监督学习类的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信