An enhanced K-means genetic algorithms for optimal clustering

M. Anusha, J. Sathiaseelan
{"title":"An enhanced K-means genetic algorithms for optimal clustering","authors":"M. Anusha, J. Sathiaseelan","doi":"10.1109/ICCIC.2014.7238422","DOIUrl":null,"url":null,"abstract":"K-means algorithm is sensitive to the initial cluster centers and clustering results diverge with different initial input which in turn falls into local optimum. Genetic Algorithms are randomized searching technique which provides a better optimal solution for fitness function of an optimization problem. This paper proposes an enhanced K-means Genetic Algorithm for optimal clustering of data (EKMG). The aim is to maximize the compactness the clusters with large separation between at least two clusters. The superiority of EKMG is compared with grouping genetic algorithm (GGA) by using real-life dataset. The experiment shows that EKMG reaches better optimal solution with high accuracy.","PeriodicalId":187874,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Computing Research","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2014.7238422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

K-means algorithm is sensitive to the initial cluster centers and clustering results diverge with different initial input which in turn falls into local optimum. Genetic Algorithms are randomized searching technique which provides a better optimal solution for fitness function of an optimization problem. This paper proposes an enhanced K-means Genetic Algorithm for optimal clustering of data (EKMG). The aim is to maximize the compactness the clusters with large separation between at least two clusters. The superiority of EKMG is compared with grouping genetic algorithm (GGA) by using real-life dataset. The experiment shows that EKMG reaches better optimal solution with high accuracy.
一种改进的k均值遗传算法用于最优聚类
K-means算法对初始聚类中心敏感,不同的初始输入会导致聚类结果出现偏差,从而陷入局部最优。遗传算法是一种随机搜索技术,它为优化问题的适应度函数提供了更好的最优解。提出了一种用于数据最优聚类的增强k -均值遗传算法。其目的是使至少两个簇之间有较大间隔的簇的紧凑性最大化。利用实际数据对比了EKMG算法与分组遗传算法(GGA)的优越性。实验结果表明,该方法能得到较好的最优解,且精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信