Computing the differential Galois group of a parameterized second-order linear differential equation

Carlos E. Arreche
{"title":"Computing the differential Galois group of a parameterized second-order linear differential equation","authors":"Carlos E. Arreche","doi":"10.1145/2608628.2608680","DOIUrl":null,"url":null,"abstract":"We develop algorithms to compute the differential Galois group <i>G</i> associated to a parameterized second-order homogeneous linear differential equation of the form\n [EQUATION]\n where the coefficients <i>r</i><sub>1</sub>, <i>r</i><sub>0</sub> ∈ <i>F</i>(<i>x</i>) are rational functions in <i>x</i> with coefficients in a partial differential field <i>F</i> of characteristic zero. This work relies on earlier procedures developed by Dreyfus and by the present author to compute <i>G</i> when <i>r</i><sub>1</sub> = 0. By reinterpreting a classical change-of-variables procedure in Galois-theoretic terms, we complete these algorithms to compute <i>G</i> with no restrictions on <i>r</i><sub>1</sub>.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We develop algorithms to compute the differential Galois group G associated to a parameterized second-order homogeneous linear differential equation of the form [EQUATION] where the coefficients r1, r0F(x) are rational functions in x with coefficients in a partial differential field F of characteristic zero. This work relies on earlier procedures developed by Dreyfus and by the present author to compute G when r1 = 0. By reinterpreting a classical change-of-variables procedure in Galois-theoretic terms, we complete these algorithms to compute G with no restrictions on r1.
计算参数化二阶线性微分方程的微分伽罗瓦群
我们开发了一种算法来计算与参数化二阶齐次线性微分方程(形式为[equation])相关的微分伽罗瓦群G,其中系数r1, r0∈F(x)是x中的有理函数,其系数在特征为零的偏微分域F中。这项工作依赖于Dreyfus和本作者开发的早期程序来计算r1 = 0时的G。通过用伽罗瓦理论术语重新解释经典的变量变换过程,我们完成了这些算法来计算不受r1限制的G。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信