Efficient Privacy-Preserving Logistic Regression with Iteratively Re-weighted Least Squares

Hiroaki Kikuchi, H. Yasunaga, H. Matsui, Chun-I Fan
{"title":"Efficient Privacy-Preserving Logistic Regression with Iteratively Re-weighted Least Squares","authors":"Hiroaki Kikuchi, H. Yasunaga, H. Matsui, Chun-I Fan","doi":"10.1109/AsiaJCIS.2016.21","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new secure protocols for privacy-preserving logistic regression of two vertically partitioned datasets. Our protocol is efficient in the sense that coefficients of logistic model are converged in few iterations by using the Iteratively Re-weighted Least Squares (IRLS). In the comparison to one of the existing work using the stochastic gradient descent (SGD), our protocol improved the performance of estimate from 30,000 to 7 iterations. We study the feasibility of the proposed protocol over the the Diagnosis Procedure Combination (DPC) database, a large-scale claim-based database of Japanese hospitals that contains confidential status of patients. Our scheme allows to estimate the probability of death with some patient information without revealing confidential data to the other party. Using the toy dataset and the trial implementation of the proposed scheme, we examine the accuracy of the proposed scheme and study the feasibility.","PeriodicalId":213242,"journal":{"name":"2016 11th Asia Joint Conference on Information Security (AsiaJCIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th Asia Joint Conference on Information Security (AsiaJCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AsiaJCIS.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a new secure protocols for privacy-preserving logistic regression of two vertically partitioned datasets. Our protocol is efficient in the sense that coefficients of logistic model are converged in few iterations by using the Iteratively Re-weighted Least Squares (IRLS). In the comparison to one of the existing work using the stochastic gradient descent (SGD), our protocol improved the performance of estimate from 30,000 to 7 iterations. We study the feasibility of the proposed protocol over the the Diagnosis Procedure Combination (DPC) database, a large-scale claim-based database of Japanese hospitals that contains confidential status of patients. Our scheme allows to estimate the probability of death with some patient information without revealing confidential data to the other party. Using the toy dataset and the trial implementation of the proposed scheme, we examine the accuracy of the proposed scheme and study the feasibility.
基于迭代重加权最小二乘的高效隐私保护逻辑回归
在本文中,我们提出了一种新的安全协议,用于两个垂直分割的数据集的隐私保护逻辑回归。该算法采用迭代重加权最小二乘(IRLS)方法,在较少的迭代中收敛了逻辑模型的系数,提高了算法的效率。与使用随机梯度下降(SGD)的现有工作之一相比,我们的协议将估计的性能从30,000次迭代提高到7次迭代。我们研究了在诊断程序组合(DPC)数据库上提出的方案的可行性,该数据库是日本医院的一个大型索赔数据库,包含患者的保密状态。我们的方案允许在不向另一方泄露机密数据的情况下,使用一些患者信息来估计死亡概率。利用玩具数据集和所提出方案的试验实施,我们检验了所提出方案的准确性并研究了可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信