Sensor Fusion-Oriented Fall Detection for Assistive Technologies Applications

S. Cagnoni, G. Matrella, M. Mordonini, Federico Sassi, L. Ascari
{"title":"Sensor Fusion-Oriented Fall Detection for Assistive Technologies Applications","authors":"S. Cagnoni, G. Matrella, M. Mordonini, Federico Sassi, L. Ascari","doi":"10.1109/ISDA.2009.203","DOIUrl":null,"url":null,"abstract":"A new trend in modern Assistive Technologies implies making extensive use of ICT to develop efficient and reliable \"Ambient Intelligence\" applications dedicated to disabled, elderly or frail people. In this paper we describe two fall detectors, based on bio-inspired algorithms. Such devices can either operate independently or be part of a modular and easily extensible architecture, able to manage different areas of an intelligent environment. In this case, effective data fusion can be achieved, thanks to the complementary nature of the sensors on which the detectors are based. One device is based on vision and can be implemented on a standard FPGA programmable logic. It relies on a simplified version of the Particle Swarm Optimization algorithm. The other device under consideration is a wearable accelerometer-based fall detector, which relies on a recent soft-computing paradigm called Hierarchical Temporal Memories (HTMs).","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

A new trend in modern Assistive Technologies implies making extensive use of ICT to develop efficient and reliable "Ambient Intelligence" applications dedicated to disabled, elderly or frail people. In this paper we describe two fall detectors, based on bio-inspired algorithms. Such devices can either operate independently or be part of a modular and easily extensible architecture, able to manage different areas of an intelligent environment. In this case, effective data fusion can be achieved, thanks to the complementary nature of the sensors on which the detectors are based. One device is based on vision and can be implemented on a standard FPGA programmable logic. It relies on a simplified version of the Particle Swarm Optimization algorithm. The other device under consideration is a wearable accelerometer-based fall detector, which relies on a recent soft-computing paradigm called Hierarchical Temporal Memories (HTMs).
面向传感器融合的跌倒检测辅助技术应用
现代辅助技术的新趋势意味着广泛使用信息通信技术来开发高效可靠的“环境智能”应用程序,专门用于残疾人、老年人或体弱者。在本文中,我们描述了两个基于仿生算法的跌落检测器。这些设备既可以独立运行,也可以成为模块化和易于扩展的体系结构的一部分,能够管理智能环境的不同区域。在这种情况下,由于探测器所基于的传感器的互补性,可以实现有效的数据融合。一种器件基于视觉,可以在标准的FPGA可编程逻辑上实现。它依赖于粒子群优化算法的简化版本。另一种正在考虑的设备是基于可穿戴加速度计的跌倒探测器,它依赖于最近的一种名为分层时间记忆(HTMs)的软计算范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信