An Improved Face Recognition Method Based on Filled Function

Shenghui Wang, Yingtao Xu, Bo Zhu
{"title":"An Improved Face Recognition Method Based on Filled Function","authors":"Shenghui Wang, Yingtao Xu, Bo Zhu","doi":"10.1109/WGEC.2008.38","DOIUrl":null,"url":null,"abstract":"3D data registration and classifier are two important components in face recognition system. Aiming at the handicaps in current methods such as slow convergence or easiness of getting into local optimization, this paper works out a novel face recognition method combining filled function method, which can find a lower local minimizer by leaving the local minimizer previously found. By repeating these processes, a global minimizer can be obtained at last. Then it works out an improved ICP 3D data registration algorithm and an improved BP neural network classifier. Experiments show that this face recognition method decreases the amount of calculation, improves the accuracy of recognition precision and has an actual recognition effect.","PeriodicalId":198475,"journal":{"name":"2008 Second International Conference on Genetic and Evolutionary Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WGEC.2008.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3D data registration and classifier are two important components in face recognition system. Aiming at the handicaps in current methods such as slow convergence or easiness of getting into local optimization, this paper works out a novel face recognition method combining filled function method, which can find a lower local minimizer by leaving the local minimizer previously found. By repeating these processes, a global minimizer can be obtained at last. Then it works out an improved ICP 3D data registration algorithm and an improved BP neural network classifier. Experiments show that this face recognition method decreases the amount of calculation, improves the accuracy of recognition precision and has an actual recognition effect.
一种基于填充函数的改进人脸识别方法
三维数据配准和分类器是人脸识别系统的两个重要组成部分。针对现有人脸识别方法收敛速度慢或容易进入局部优化的缺点,本文提出了一种结合填充函数法的人脸识别新方法,该方法可以在保留原有的局部最小值的基础上找到一个更低的局部最小值。通过重复这些过程,最终得到一个全局最小值。然后提出了改进的ICP三维数据配准算法和改进的BP神经网络分类器。实验表明,该人脸识别方法减少了计算量,提高了识别精度的准确性,具有实际的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信