Common Factors, Trends, and Cycles in Large Datasets

Matteo Barigozzi, Matteo Luciani
{"title":"Common Factors, Trends, and Cycles in Large Datasets","authors":"Matteo Barigozzi, Matteo Luciani","doi":"10.17016/FEDS.2017.111","DOIUrl":null,"url":null,"abstract":"This paper considers a non-stationary dynamic factor model for large datasets to disentangle long-run from short-run co-movements. We first propose a new Quasi Maximum Likelihood estimator of the model based on the Kalman Smoother and the Expectation Maximisation algorithm. The asymptotic properties of the estimator are discussed. Then, we show how to separate trends and cycles in the factors by mean of eigenanalysis of the estimated non-stationary factors. Finally, we employ our methodology on a panel of US quarterly macroeconomic indicators to estimate aggregate real output, or Gross Domestic Output, and the output gap.","PeriodicalId":278071,"journal":{"name":"Board of Governors: Finance & Economics Discussion Series (Topic)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Board of Governors: Finance & Economics Discussion Series (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17016/FEDS.2017.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a non-stationary dynamic factor model for large datasets to disentangle long-run from short-run co-movements. We first propose a new Quasi Maximum Likelihood estimator of the model based on the Kalman Smoother and the Expectation Maximisation algorithm. The asymptotic properties of the estimator are discussed. Then, we show how to separate trends and cycles in the factors by mean of eigenanalysis of the estimated non-stationary factors. Finally, we employ our methodology on a panel of US quarterly macroeconomic indicators to estimate aggregate real output, or Gross Domestic Output, and the output gap.
大数据集中的共同因素、趋势和周期
本文考虑了一种大型数据集的非平稳动态因子模型,以区分长期和短期的协同运动。首先提出了一种基于卡尔曼平滑和期望最大化算法的拟极大似然估计。讨论了估计量的渐近性质。然后,我们展示了如何通过估计的非平稳因素的特征分析来分离因素中的趋势和周期。最后,我们将我们的方法应用于一组美国季度宏观经济指标,以估计实际总产出(或国内生产总值)和产出缺口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信