Identifying Opinion and Fact Subcategories from the Social Web

Ankan Mullick, D. SurjodoyGhosh, Shivam Maheshwari, Srotaswini Sahoo, S. Maity, C. Soumya, Pawan Goyal
{"title":"Identifying Opinion and Fact Subcategories from the Social Web","authors":"Ankan Mullick, D. SurjodoyGhosh, Shivam Maheshwari, Srotaswini Sahoo, S. Maity, C. Soumya, Pawan Goyal","doi":"10.1145/3148330.3154518","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of building automatic classifiers to categorize opinions and facts into appropriate subcategories. While working on two English News article datasets and two social media datasets (Twitter hashtag idioms and Youtube comments), we achieve consistent performance with accuracies in the range of 70-85% for opinion and fact sub-categorization. The proposed classifiers can be instrumental in understanding argumentative relations as well as in developing fact-checking systems. It can also be used to detect anomalous behavior such as predominant drunkers or other psychological changes.","PeriodicalId":334195,"journal":{"name":"Proceedings of the 2018 ACM International Conference on Supporting Group Work","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Conference on Supporting Group Work","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3148330.3154518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we investigate the problem of building automatic classifiers to categorize opinions and facts into appropriate subcategories. While working on two English News article datasets and two social media datasets (Twitter hashtag idioms and Youtube comments), we achieve consistent performance with accuracies in the range of 70-85% for opinion and fact sub-categorization. The proposed classifiers can be instrumental in understanding argumentative relations as well as in developing fact-checking systems. It can also be used to detect anomalous behavior such as predominant drunkers or other psychological changes.
从社交网络中识别意见和事实子类别
在本文中,我们研究了建立自动分类器的问题,将观点和事实分类到适当的子类别中。在处理两个英语新闻文章数据集和两个社交媒体数据集(Twitter标签习语和Youtube评论)时,我们在观点和事实子分类方面实现了一致的性能,准确率在70-85%之间。所提出的分类器可以帮助理解论证关系以及开发事实检查系统。它也可以用来检测异常行为,如酗酒或其他心理变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信