Channel-Wise Bit Allocation for Deep Visual Feature Quantization

Wei Wang, Zhuo Chen, Zhe Wang, Jie Lin, Long Xu, Weisi Lin
{"title":"Channel-Wise Bit Allocation for Deep Visual Feature Quantization","authors":"Wei Wang, Zhuo Chen, Zhe Wang, Jie Lin, Long Xu, Weisi Lin","doi":"10.1109/ICIP46576.2022.9897325","DOIUrl":null,"url":null,"abstract":"Intermediate deep visual feature compression and transmission is an emerging research topic, which enables a good balance among computing load, bandwidth usage and generalization ability for AI-based visual analysis in edge-cloud collaboration. Quantization and the corresponding rate-distortion optimization are the key techniques in deep feature compression. In this paper, by exploring the feature statistics and a greedy iterative algorithm, we propose a channel-wise bit allocation method for deep feature quantization optimizing for network output error. Given the limited rate and computational power, the proposed method can quantize features with small information loss. Moreover, the method also provides the option to handle the trade-offs between computational cost and quantization performance. Experimental results on ResNet and VGGNet features demonstrate the effectiveness of the proposed bit allocation method.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intermediate deep visual feature compression and transmission is an emerging research topic, which enables a good balance among computing load, bandwidth usage and generalization ability for AI-based visual analysis in edge-cloud collaboration. Quantization and the corresponding rate-distortion optimization are the key techniques in deep feature compression. In this paper, by exploring the feature statistics and a greedy iterative algorithm, we propose a channel-wise bit allocation method for deep feature quantization optimizing for network output error. Given the limited rate and computational power, the proposed method can quantize features with small information loss. Moreover, the method also provides the option to handle the trade-offs between computational cost and quantization performance. Experimental results on ResNet and VGGNet features demonstrate the effectiveness of the proposed bit allocation method.
基于信道的深度视觉特征量化位分配
中间深度视觉特征的压缩与传输是一个新兴的研究课题,它能够很好地平衡计算负荷、带宽使用和泛化能力,实现边缘云协同下基于人工智能的视觉分析。量化和相应的率失真优化是深度特征压缩的关键技术。本文通过探索特征统计和贪婪迭代算法,提出了一种基于信道的比特分配方法,用于网络输出误差的深度特征量化优化。在速率和计算能力有限的情况下,该方法能够以较小的信息损失对特征进行量化。此外,该方法还提供了处理计算成本和量化性能之间权衡的选项。在ResNet和VGGNet特征上的实验结果证明了所提出的比特分配方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信