Early segmentation in video compression using CNN processors

K. László, F. Ziliani, T. Roska, Murat Kunt
{"title":"Early segmentation in video compression using CNN processors","authors":"K. László, F. Ziliani, T. Roska, Murat Kunt","doi":"10.1109/CNNA.1998.685359","DOIUrl":null,"url":null,"abstract":"Two analogic (analog and logic) CNN algorithms are presented which segment a video sequence into objects. The algorithms are mainly based on 3 by 3, linear templates. This allows the CNN Universal Machine to execute the task achieving enormous computation speed (10/sup 12/ equivalent operation per second). The proposed segmentation algorithms rely on texture and contour information only. They differ in the use or not of the color information. The estimated execution time proves that the proposed segmentation method may be implemented in real time. This result and the quality of the obtained frame description are very appealing in the context of the new video coding standard MPEG-4.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Two analogic (analog and logic) CNN algorithms are presented which segment a video sequence into objects. The algorithms are mainly based on 3 by 3, linear templates. This allows the CNN Universal Machine to execute the task achieving enormous computation speed (10/sup 12/ equivalent operation per second). The proposed segmentation algorithms rely on texture and contour information only. They differ in the use or not of the color information. The estimated execution time proves that the proposed segmentation method may be implemented in real time. This result and the quality of the obtained frame description are very appealing in the context of the new video coding standard MPEG-4.
CNN处理器在视频压缩中的早期分割
提出了两种模拟(模拟和逻辑)CNN算法,将视频序列分割成对象。该算法主要基于3 × 3线性模板。这使得CNN通用机能够执行任务,实现巨大的计算速度(每秒10/sup 12/等效操作)。本文提出的分割算法仅依赖于纹理和轮廓信息。它们在使用或不使用颜色信息方面有所不同。估计的执行时间证明了所提出的分割方法可以实时实现。在新的视频编码标准MPEG-4的背景下,这一结果和所获得的帧描述质量非常吸引人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信