Preperiodicity and systematic extraction of periodic orbits of the quadratic map

J. Gallas
{"title":"Preperiodicity and systematic extraction of periodic orbits of the quadratic map","authors":"J. Gallas","doi":"10.1142/S0129183120501740","DOIUrl":null,"url":null,"abstract":"Iteration of the quadratic map produces sequences of polynomials whose degrees {\\sl explode} as the orbital period grows more and more. The polynomial mixing all 335 period-12 orbits has degree $4020$, while for the $52,377$ period-20 orbits the degree rises already to $1,047,540$. Here, we show how to use preperiodic points to systematically extract exact equations of motion, one by one, with no need for iteration. Exact orbital equations provide valuable insight about the arithmetic structure and nesting properties of towers of algebraic numbers which define orbital points and bifurcation cascades of the map.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129183120501740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Iteration of the quadratic map produces sequences of polynomials whose degrees {\sl explode} as the orbital period grows more and more. The polynomial mixing all 335 period-12 orbits has degree $4020$, while for the $52,377$ period-20 orbits the degree rises already to $1,047,540$. Here, we show how to use preperiodic points to systematically extract exact equations of motion, one by one, with no need for iteration. Exact orbital equations provide valuable insight about the arithmetic structure and nesting properties of towers of algebraic numbers which define orbital points and bifurcation cascades of the map.
二次映射周期轨道的预周期和系统提取
二次映射的迭代产生多项式序列,其度数随着轨道周期越来越大而爆炸。混合所有335个周期-12轨道的多项式的度为$4020$,而对于$52,377$周期-20轨道,其度已经上升到$1,047,540$。在这里,我们展示了如何使用周期前点来系统地提取精确的运动方程,一个接一个,不需要迭代。精确轨道方程对定义轨道点和分岔级联的代数数塔的算术结构和嵌套特性提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信