MPI Acceleration of Image Classification: Are We Seeing the Resurgence of MPI in Solving Big Data Problems?

Sameer Kumar
{"title":"MPI Acceleration of Image Classification: Are We Seeing the Resurgence of MPI in Solving Big Data Problems?","authors":"Sameer Kumar","doi":"10.1145/3085158.3091993","DOIUrl":null,"url":null,"abstract":"Recent work has shown the effectiveness of the MPI programming paradigm in accelerating image classification via the Stochastic Gradient Descent optimization technique. Applications such as Caffe, Torch and Tensor Flow, that use Graphic Processing Unit accelerators within the SMP node, have been extended to use MPI across nodes with scalable speedups. In this talk, we will briefly review convolutional neural networks and the stochastic gradient technique to explore optimized solutions for the image classification problem. Next, I will review opportunities and challenges in parallel and distributed asynchronous stochastic gradient descent and the benefits from using MPI libraries. I will also present possible future directions for MPI based deep learning and other Big Data applications.","PeriodicalId":425891,"journal":{"name":"Proceedings of the 2017 Workshop on Software Engineering Methods for Parallel and High Performance Applications","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Workshop on Software Engineering Methods for Parallel and High Performance Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3085158.3091993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work has shown the effectiveness of the MPI programming paradigm in accelerating image classification via the Stochastic Gradient Descent optimization technique. Applications such as Caffe, Torch and Tensor Flow, that use Graphic Processing Unit accelerators within the SMP node, have been extended to use MPI across nodes with scalable speedups. In this talk, we will briefly review convolutional neural networks and the stochastic gradient technique to explore optimized solutions for the image classification problem. Next, I will review opportunities and challenges in parallel and distributed asynchronous stochastic gradient descent and the benefits from using MPI libraries. I will also present possible future directions for MPI based deep learning and other Big Data applications.
图像分类的MPI加速:我们是否看到MPI在解决大数据问题中的复苏?
最近的研究表明,MPI编程范式在通过随机梯度下降优化技术加速图像分类方面是有效的。在SMP节点内使用图形处理单元加速器的应用程序,如Caffe、Torch和Tensor Flow,已经扩展到跨节点使用MPI,并具有可扩展的加速。在本次演讲中,我们将简要回顾卷积神经网络和随机梯度技术,以探索图像分类问题的优化解决方案。接下来,我将回顾并行和分布式异步随机梯度下降中的机遇和挑战,以及使用MPI库的好处。我还将介绍基于MPI的深度学习和其他大数据应用的可能未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信