No-Reference JPEG Image Quality Assessment Based on Support Vector Regression Neural Network

You-Sai Zhang, Zhong-Jun Chen
{"title":"No-Reference JPEG Image Quality Assessment Based on Support Vector Regression Neural Network","authors":"You-Sai Zhang, Zhong-Jun Chen","doi":"10.1109/DBTA.2010.5658934","DOIUrl":null,"url":null,"abstract":"In this paper,a support vector regression neural network (SVR-NN) approach is presented to assessment the visual quality of JPEG-coded images without reference image.The key features of human visual system (HVS) such as edge amplitude and length, background activity and luminance are extracted from sample images as input vectors. SVR-NN was used to search and approximate the functional relationship between HVS and mean opinion score (MOS). Then,the measuring of visual quality of JPEG-coded images was realized. Experimental results prove that it is easy to initialize the network structure and set parameters of SVR-NN. And the better generalization performance owned by SVR-NN can add the new features of the sample automatically.Compared with other image quality metrics, the experimental results of the proposed metric exhibit much higher correlation with perception character of HVS. And the role of HVS feature in image quality index is fully reflected.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5658934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper,a support vector regression neural network (SVR-NN) approach is presented to assessment the visual quality of JPEG-coded images without reference image.The key features of human visual system (HVS) such as edge amplitude and length, background activity and luminance are extracted from sample images as input vectors. SVR-NN was used to search and approximate the functional relationship between HVS and mean opinion score (MOS). Then,the measuring of visual quality of JPEG-coded images was realized. Experimental results prove that it is easy to initialize the network structure and set parameters of SVR-NN. And the better generalization performance owned by SVR-NN can add the new features of the sample automatically.Compared with other image quality metrics, the experimental results of the proposed metric exhibit much higher correlation with perception character of HVS. And the role of HVS feature in image quality index is fully reflected.
基于支持向量回归神经网络的无参考JPEG图像质量评估
提出了一种基于支持向量回归神经网络(SVR-NN)的无参考图像jpeg编码图像视觉质量评价方法。从样本图像中提取人类视觉系统(HVS)的关键特征,如边缘振幅和长度、背景活动和亮度作为输入向量。采用SVR-NN对HVS和平均意见评分(MOS)之间的函数关系进行搜索和近似。然后,实现了对jpeg编码图像视觉质量的测量。实验结果表明,该方法易于初始化网络结构和参数设置。并且SVR-NN具有较好的泛化性能,可以自动添加样本的新特征。与其他图像质量度量相比,该度量的实验结果与HVS的感知特性具有更高的相关性。并充分体现了HVS特征在图像质量指标中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信