Faisel E. M. Tubbal, R. Raad, Augustinraj Lourdunathan, Panagiotis Ioannis Theoharis, Suhila Abulgasem, Akram Alkaseh
{"title":"High Gain Circularly Polarized Fabry-Pérot Antenna for S-band CubeSat Applications","authors":"Faisel E. M. Tubbal, R. Raad, Augustinraj Lourdunathan, Panagiotis Ioannis Theoharis, Suhila Abulgasem, Akram Alkaseh","doi":"10.1109/ICCSPA55860.2022.10019055","DOIUrl":null,"url":null,"abstract":"This paper presents a high gain circular polarized Fabry-Pérot antenna for CubeSat applications. A key idea is the implementation of cavity using a $5\\times 5$ Metasurface ground surface to improve the total gain of the proposed antenna design. The two opposite corners of the radiating patch elements are truncated to achieve a right-hand circular polarisation (RHCP). The presented simulation results show that the proposed antenna provides a high gain of 9.4 dBi, −10 dB bandwidth 12% (2.42-2.73 GHz) with a reflection coefficient of −15.6 dB at 2.5GHz and a −3dB axial ratio bandwidth of 1.6% at 2.5GHz.","PeriodicalId":106639,"journal":{"name":"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSPA55860.2022.10019055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a high gain circular polarized Fabry-Pérot antenna for CubeSat applications. A key idea is the implementation of cavity using a $5\times 5$ Metasurface ground surface to improve the total gain of the proposed antenna design. The two opposite corners of the radiating patch elements are truncated to achieve a right-hand circular polarisation (RHCP). The presented simulation results show that the proposed antenna provides a high gain of 9.4 dBi, −10 dB bandwidth 12% (2.42-2.73 GHz) with a reflection coefficient of −15.6 dB at 2.5GHz and a −3dB axial ratio bandwidth of 1.6% at 2.5GHz.