{"title":"Trajectory prediction method using deep learning for intelligent and connected vehicles","authors":"Tianqi Qie, Weida Wang, Chaowei Yang, Ying Li, Yuhang Zhang, Wenjie Liu","doi":"10.1109/ICPS58381.2023.10128049","DOIUrl":null,"url":null,"abstract":"The trajectory prediction is significant for the driving safety of intelligent and connected vehicles. To accurately predict the vehicle trajectory, a hybrid method combining physic-based and data-based methods is proposed for intelligent and connected vehicles. The proposed method applied the physic-based method to represent vehicle kinematics. Then, the error of the physic-based method, which is the unmodeled features, is modeled with the data-based deep learning method using Encoder-Decoder Long short-term memory (LSTM). The proposed method is trained and evaluated by an actual vehicle dataset. When the prediction horizon is 3s, compared with the physic-based method, the longitudinal error, lateral error, and yaw angle error decreased by 93.9%, 86.6%, and 76.0%, respectively. Results show that the proposed method improves the trajectory prediction accuracy of autonomous and connected vehicles.","PeriodicalId":426122,"journal":{"name":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS58381.2023.10128049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The trajectory prediction is significant for the driving safety of intelligent and connected vehicles. To accurately predict the vehicle trajectory, a hybrid method combining physic-based and data-based methods is proposed for intelligent and connected vehicles. The proposed method applied the physic-based method to represent vehicle kinematics. Then, the error of the physic-based method, which is the unmodeled features, is modeled with the data-based deep learning method using Encoder-Decoder Long short-term memory (LSTM). The proposed method is trained and evaluated by an actual vehicle dataset. When the prediction horizon is 3s, compared with the physic-based method, the longitudinal error, lateral error, and yaw angle error decreased by 93.9%, 86.6%, and 76.0%, respectively. Results show that the proposed method improves the trajectory prediction accuracy of autonomous and connected vehicles.