Trajectory prediction method using deep learning for intelligent and connected vehicles

Tianqi Qie, Weida Wang, Chaowei Yang, Ying Li, Yuhang Zhang, Wenjie Liu
{"title":"Trajectory prediction method using deep learning for intelligent and connected vehicles","authors":"Tianqi Qie, Weida Wang, Chaowei Yang, Ying Li, Yuhang Zhang, Wenjie Liu","doi":"10.1109/ICPS58381.2023.10128049","DOIUrl":null,"url":null,"abstract":"The trajectory prediction is significant for the driving safety of intelligent and connected vehicles. To accurately predict the vehicle trajectory, a hybrid method combining physic-based and data-based methods is proposed for intelligent and connected vehicles. The proposed method applied the physic-based method to represent vehicle kinematics. Then, the error of the physic-based method, which is the unmodeled features, is modeled with the data-based deep learning method using Encoder-Decoder Long short-term memory (LSTM). The proposed method is trained and evaluated by an actual vehicle dataset. When the prediction horizon is 3s, compared with the physic-based method, the longitudinal error, lateral error, and yaw angle error decreased by 93.9%, 86.6%, and 76.0%, respectively. Results show that the proposed method improves the trajectory prediction accuracy of autonomous and connected vehicles.","PeriodicalId":426122,"journal":{"name":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS58381.2023.10128049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The trajectory prediction is significant for the driving safety of intelligent and connected vehicles. To accurately predict the vehicle trajectory, a hybrid method combining physic-based and data-based methods is proposed for intelligent and connected vehicles. The proposed method applied the physic-based method to represent vehicle kinematics. Then, the error of the physic-based method, which is the unmodeled features, is modeled with the data-based deep learning method using Encoder-Decoder Long short-term memory (LSTM). The proposed method is trained and evaluated by an actual vehicle dataset. When the prediction horizon is 3s, compared with the physic-based method, the longitudinal error, lateral error, and yaw angle error decreased by 93.9%, 86.6%, and 76.0%, respectively. Results show that the proposed method improves the trajectory prediction accuracy of autonomous and connected vehicles.
基于深度学习的智能网联车辆轨迹预测方法
轨迹预测对智能网联汽车的行驶安全具有重要意义。为了准确预测车辆轨迹,针对智能网联车辆,提出了一种基于物理和数据的混合预测方法。该方法采用基于物理的方法来表示车辆的运动学。然后,利用基于数据的深度学习方法,利用编码器-解码器长短期记忆(LSTM)对基于物理方法的误差(即未建模的特征)进行建模。该方法通过实际车辆数据集进行训练和评估。当预测层位为3s时,与基于物理的方法相比,纵向误差、横向误差和偏航角误差分别减小了93.9%、86.6%和76.0%。结果表明,该方法提高了自动驾驶和网联车辆的轨迹预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信