Video Understanding via Convolutional Temporal Pooling Network and Multimodal Feature Fusion

Heeseung Kwon, Suha Kwak, Minsu Cho
{"title":"Video Understanding via Convolutional Temporal Pooling Network and Multimodal Feature Fusion","authors":"Heeseung Kwon, Suha Kwak, Minsu Cho","doi":"10.1145/3265987.3265991","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new end-to-end convolutional neural network architecture for video classification, and apply the model to action and scene recognition in untrimmed videos for the Challenge on Comprehensive Video Understanding in the Wild. The proposed architecture takes densely sampled video frames as inputs, and apply a temporal pooling operator inside the network to capture temporal context of the input video. As a result, our architecture outputs distinct video-level features with a set of different temporal pooling operators. Furthermore, we design a multimodal feature fusion model by concatenating our video-level features with those given in the challenge dataset. Experimental results on the challenge dataset demonstrate that the proposed architecture and the multimodal feature fusion approach together achieve outstanding performance in action and scene recognition.","PeriodicalId":151362,"journal":{"name":"Proceedings of the 1st Workshop and Challenge on Comprehensive Video Understanding in the Wild","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop and Challenge on Comprehensive Video Understanding in the Wild","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3265987.3265991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present a new end-to-end convolutional neural network architecture for video classification, and apply the model to action and scene recognition in untrimmed videos for the Challenge on Comprehensive Video Understanding in the Wild. The proposed architecture takes densely sampled video frames as inputs, and apply a temporal pooling operator inside the network to capture temporal context of the input video. As a result, our architecture outputs distinct video-level features with a set of different temporal pooling operators. Furthermore, we design a multimodal feature fusion model by concatenating our video-level features with those given in the challenge dataset. Experimental results on the challenge dataset demonstrate that the proposed architecture and the multimodal feature fusion approach together achieve outstanding performance in action and scene recognition.
基于卷积时间池化网络和多模态特征融合的视频理解
在本文中,我们提出了一种新的端到端卷积神经网络架构用于视频分类,并将该模型应用于未修剪视频的动作和场景识别,以应对“野外综合视频理解挑战”。该架构以密集采样的视频帧作为输入,并在网络内部应用时间池算子来捕获输入视频的时间上下文。因此,我们的架构使用一组不同的时间池操作符输出不同的视频级特征。此外,我们通过将我们的视频级特征与挑战数据集中给出的特征连接起来,设计了一个多模态特征融合模型。在挑战数据集上的实验结果表明,该架构和多模态特征融合方法在动作和场景识别方面取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信