A Similarity Search System Based on the Hamming Distance of Social Profiles

R. Villaça, L. B. D. Paula, R. Pasquini, M. Magalhães
{"title":"A Similarity Search System Based on the Hamming Distance of Social Profiles","authors":"R. Villaça, L. B. D. Paula, R. Pasquini, M. Magalhães","doi":"10.1109/ICSC.2013.24","DOIUrl":null,"url":null,"abstract":"The goal of a similarity search system is to allow users to retrieve data that presents a required similarity level in a certain dataset. For example, such dataset may be applied in the social media scenario, where huge amounts of data represent users in a social network. This paper uses a Vector Space Model (VSM) to represent users' profiles and the Random Hyper plane Hashing (RHH) function to create indexes for them. Both VSM and RHH compose an alternative to address the challenge of performing similarity searches over the huge amount of data present in the social media scenario: the Hamming similarity. In order to evaluate the effectiveness of our proposal, this paper brings examples of reference profiles, used for performing queries, and presents results regarding the correlation between cosine and Hamming similarity and the frequency distribution of Hamming distances among identifiers of users' profiles. In short, the results indicate that Hamming similarity can be useful for the development of similarity search systems for social media.","PeriodicalId":189682,"journal":{"name":"2013 IEEE Seventh International Conference on Semantic Computing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Seventh International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2013.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The goal of a similarity search system is to allow users to retrieve data that presents a required similarity level in a certain dataset. For example, such dataset may be applied in the social media scenario, where huge amounts of data represent users in a social network. This paper uses a Vector Space Model (VSM) to represent users' profiles and the Random Hyper plane Hashing (RHH) function to create indexes for them. Both VSM and RHH compose an alternative to address the challenge of performing similarity searches over the huge amount of data present in the social media scenario: the Hamming similarity. In order to evaluate the effectiveness of our proposal, this paper brings examples of reference profiles, used for performing queries, and presents results regarding the correlation between cosine and Hamming similarity and the frequency distribution of Hamming distances among identifiers of users' profiles. In short, the results indicate that Hamming similarity can be useful for the development of similarity search systems for social media.
基于社会概况汉明距离的相似性搜索系统
相似度搜索系统的目标是允许用户检索在特定数据集中呈现所需相似度的数据。例如,这样的数据集可以应用于社交媒体场景,海量数据代表社交网络中的用户。本文使用向量空间模型(VSM)来表示用户的配置文件,并使用随机超平面哈希(RHH)函数为用户创建索引。VSM和RHH都构成了一种替代方案,以解决在社交媒体场景中存在的大量数据上执行相似性搜索的挑战:汉明相似性。为了评估我们的建议的有效性,本文给出了用于执行查询的参考配置文件的示例,并给出了余弦和汉明相似度之间的相关性以及用户配置文件标识符之间汉明距离的频率分布的结果。简而言之,研究结果表明,汉明相似度对社交媒体相似度搜索系统的开发是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信