Tracking objects using particle filters

I. Senji, Z. Kalafatić
{"title":"Tracking objects using particle filters","authors":"I. Senji, Z. Kalafatić","doi":"10.1109/ELMAR.2007.4418794","DOIUrl":null,"url":null,"abstract":"This paper describes an implementation of particle filter tracker based on condensation algorithm. The filter processes measurements as they become available in a standard predict-update loop. The prediction phase uses the available dynamic model to predict the probability density function in the next time step, by applying both the deterministic and stochastic component of the model to all samples. In the update phase the new measurement is used to update the probability density function by updating the weight of each sample. The goal of this work was to investigate the possibilities of object tracking without learning a dynamic motion model. Changes to the basic algorithm have been implemented that can help to improve the tracking performance by using more than one motion model and more than one predict-update iteration per measurement.","PeriodicalId":170000,"journal":{"name":"ELMAR 2007","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELMAR 2007","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2007.4418794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes an implementation of particle filter tracker based on condensation algorithm. The filter processes measurements as they become available in a standard predict-update loop. The prediction phase uses the available dynamic model to predict the probability density function in the next time step, by applying both the deterministic and stochastic component of the model to all samples. In the update phase the new measurement is used to update the probability density function by updating the weight of each sample. The goal of this work was to investigate the possibilities of object tracking without learning a dynamic motion model. Changes to the basic algorithm have been implemented that can help to improve the tracking performance by using more than one motion model and more than one predict-update iteration per measurement.
使用粒子过滤器跟踪对象
本文介绍了一种基于凝聚算法的粒子滤波跟踪器的实现。当测量结果在标准的预测-更新循环中可用时,过滤器将对其进行处理。预测阶段通过将模型的确定性和随机成分应用于所有样本,使用可用的动态模型来预测下一个时间步的概率密度函数。在更新阶段,使用新的测量值通过更新每个样本的权重来更新概率密度函数。这项工作的目的是研究在不学习动态运动模型的情况下进行目标跟踪的可能性。已经实现了对基本算法的更改,可以通过使用多个运动模型和每次测量多个预测更新迭代来帮助提高跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信