Pansharpening of hyperspectral images: Exploiting data acquired by multiple platforms

Daniele Picone, R. Restaino, G. Vivone, P. Addesso, J. Chanussot
{"title":"Pansharpening of hyperspectral images: Exploiting data acquired by multiple platforms","authors":"Daniele Picone, R. Restaino, G. Vivone, P. Addesso, J. Chanussot","doi":"10.1109/IGARSS.2016.7730883","DOIUrl":null,"url":null,"abstract":"Accurate representations of the Earth surface in both spatial and spectral domains are highly desirable in many applications using remotely sensed data. An effective solution is achieved by combining hyperspectral data, which are characterized by a high spectral diversity, with high spatial resolution images, collected by multispectral or panchromatic sensors. In this work, we compare the outcomes provided by fusing single-platform or multi-platform data. We demonstrate that the optimal choice depends on the target spatial resolution to be achieved. To this aim, real images collected by the Hyperion sensor are combined with data acquired by the ALI sensor or the QuickBird sensor assessing the fused outcomes at reduced resolution.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Accurate representations of the Earth surface in both spatial and spectral domains are highly desirable in many applications using remotely sensed data. An effective solution is achieved by combining hyperspectral data, which are characterized by a high spectral diversity, with high spatial resolution images, collected by multispectral or panchromatic sensors. In this work, we compare the outcomes provided by fusing single-platform or multi-platform data. We demonstrate that the optimal choice depends on the target spatial resolution to be achieved. To this aim, real images collected by the Hyperion sensor are combined with data acquired by the ALI sensor or the QuickBird sensor assessing the fused outcomes at reduced resolution.
高光谱图像的泛锐化:利用多平台采集的数据
在许多使用遥感数据的应用中,地球表面在空间和光谱域的精确表示是非常需要的。通过将具有高光谱多样性的高光谱数据与多光谱或全色传感器收集的高空间分辨率图像相结合,可以实现有效的解决方案。在这项工作中,我们比较了融合单平台和多平台数据提供的结果。我们证明了最优选择取决于要达到的目标空间分辨率。为此,Hyperion传感器收集的真实图像与ALI传感器或QuickBird传感器获取的数据相结合,以降低分辨率评估融合结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信