{"title":"Deep Reinforcement Learning for Autonomous Driving using High-Level Heterogeneous Graph Representations","authors":"M. Schier, Christoph Reinders, B. Rosenhahn","doi":"10.1109/ICRA48891.2023.10160762","DOIUrl":null,"url":null,"abstract":"Graph networks have recently been used for decision making in automated driving tasks for their ability to capture a variable number of traffic participants. Current high-level graph-based approaches, however, do not model the entire road network and thus must rely on handcrafted features for vehicle-to-vehicle edges encompassing the road topology indirectly. We propose an entity-relation framework that intuitively models the road network and the traffic participants in a heterogeneous graph, representing all relevant information. Our novel architecture transforms the heterogeneous road-vehicle graph into a simpler graph of homogeneous node and edge types to allow effective training for deep reinforcement learning while introducing minimal prior knowledge. Unlike previous approaches, the vehicle-to-vehicle edges of this reduced graph are fully learnable and can therefore encode traffic rules without explicit feature design, an important step towards a holistic reinforcement learning model for automated driving. We show that our proposed method outperforms precomputed handcrafted features on intersection scenarios while also learning the semantics of right-of-way rules.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Graph networks have recently been used for decision making in automated driving tasks for their ability to capture a variable number of traffic participants. Current high-level graph-based approaches, however, do not model the entire road network and thus must rely on handcrafted features for vehicle-to-vehicle edges encompassing the road topology indirectly. We propose an entity-relation framework that intuitively models the road network and the traffic participants in a heterogeneous graph, representing all relevant information. Our novel architecture transforms the heterogeneous road-vehicle graph into a simpler graph of homogeneous node and edge types to allow effective training for deep reinforcement learning while introducing minimal prior knowledge. Unlike previous approaches, the vehicle-to-vehicle edges of this reduced graph are fully learnable and can therefore encode traffic rules without explicit feature design, an important step towards a holistic reinforcement learning model for automated driving. We show that our proposed method outperforms precomputed handcrafted features on intersection scenarios while also learning the semantics of right-of-way rules.