Scalable Analysis of Open Data Graphs

Andrei Stoica, Michael Valdron, K. Pu
{"title":"Scalable Analysis of Open Data Graphs","authors":"Andrei Stoica, Michael Valdron, K. Pu","doi":"10.1109/IRI.2019.00059","DOIUrl":null,"url":null,"abstract":"We have studied Open Data as a connected graph. Each data package is considered a vertex, and we studied the similarity graph induced by several different similarity measures. We analyzed the resulting similarity graph using different metrics to estimate its quality and informativeness. In order to cope with the size of the open data graph (over 6 billion edges), the graph constructions and analysis are done using a distributed computation framework, Apache Spark. The algorithms were implemented using the Spark resilient distributed data algebra, and executed on the Google Cloud Platform (GCP).","PeriodicalId":295028,"journal":{"name":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2019.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have studied Open Data as a connected graph. Each data package is considered a vertex, and we studied the similarity graph induced by several different similarity measures. We analyzed the resulting similarity graph using different metrics to estimate its quality and informativeness. In order to cope with the size of the open data graph (over 6 billion edges), the graph constructions and analysis are done using a distributed computation framework, Apache Spark. The algorithms were implemented using the Spark resilient distributed data algebra, and executed on the Google Cloud Platform (GCP).
开放数据图的可扩展分析
我们把开放数据作为一个连通图来研究。每个数据包被认为是一个顶点,我们研究了由几种不同的相似度度量引起的相似图。我们使用不同的度量来分析得到的相似图,以估计其质量和信息量。为了处理开放数据图的大小(超过60亿个边),图的构建和分析使用分布式计算框架Apache Spark完成。算法采用Spark弹性分布式数据代数实现,并在谷歌云平台(GCP)上执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信