Extreme Risk Averse Policy for Goal-Directed Risk-Sensitive Markov Decision Process

Valdinei Freire, K. V. Delgado
{"title":"Extreme Risk Averse Policy for Goal-Directed Risk-Sensitive Markov Decision Process","authors":"Valdinei Freire, K. V. Delgado","doi":"10.1109/BRACIS.2016.025","DOIUrl":null,"url":null,"abstract":"The Goal-Directed Risk-Sensitive Markov Decision Process allows arbitrary risk attitudes for the probabilistic planning problem to reach a goal state. In this problem, the risk attitude is modeled by an expected exponential utility and a risk factor λ. However, the problem is not well defined for every λ, posing the problem of defining the maximum (extreme) value for this factor. In this paper, we propose an algorithm to find this e-extreme risk factor and the corresponding optimal policy.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Goal-Directed Risk-Sensitive Markov Decision Process allows arbitrary risk attitudes for the probabilistic planning problem to reach a goal state. In this problem, the risk attitude is modeled by an expected exponential utility and a risk factor λ. However, the problem is not well defined for every λ, posing the problem of defining the maximum (extreme) value for this factor. In this paper, we propose an algorithm to find this e-extreme risk factor and the corresponding optimal policy.
目标导向风险敏感马尔可夫决策过程的极端风险厌恶策略
目标导向的风险敏感马尔可夫决策过程允许概率规划问题的任意风险态度达到目标状态。在这个问题中,风险态度由期望指数效用和风险因子λ来建模。然而,这个问题并不是对每个λ都有很好的定义,这就提出了定义该因子的最大值(极值)的问题。本文提出了一种求e极端风险因子的算法和相应的最优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信