Temporal Cues from Socially Unacceptable Trajectories for Anomaly Detection

Neelu Madan, Arya Farkhondeh, Kamal Nasrollahi, Sergio Escalera, T. Moeslund
{"title":"Temporal Cues from Socially Unacceptable Trajectories for Anomaly Detection","authors":"Neelu Madan, Arya Farkhondeh, Kamal Nasrollahi, Sergio Escalera, T. Moeslund","doi":"10.1109/ICCVW54120.2021.00244","DOIUrl":null,"url":null,"abstract":"State-of-the-Art (SoTA) deep learning-based approaches to detect anomalies in surveillance videos utilize limited temporal information, including basic information from motion, e.g., optical flow computed between consecutive frames. In this paper, we compliment the SoTA methods by including long-range dependencies from trajectories for anomaly detection. To achieve that, we first created trajectories by running a tracker on two SoTA datasets, namely Avenue and Shanghai-Tech. We propose a prediction-based anomaly detection method using trajectories based on Social GANs, also called in this paper as temporal-based anomaly detection. Then, we hypothesize that late fusion of the result of this temporal-based anomaly detection system with spatial-based anomaly detection systems produces SoTA results. We verify this hypothesis on two spatial-based anomaly detection systems. We show that both cases produce results better than baseline spatial-based systems, indicating the usefulness of the temporal information coming from the trajectories for anomaly detection. We observe that the proposed approach depicts the maximum improvement in micro-level Area-Under-the-Curve (AUC) by 4.1% on CUHK Avenue and 3.4% on Shanghai-Tech over one of the baseline method. We also show a high performance on cross-data evaluation, where we learn the weights to combine spatial and temporal information on Shanghai-Tech and perform evaluation on CUHK Avenue and vice-versa.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

State-of-the-Art (SoTA) deep learning-based approaches to detect anomalies in surveillance videos utilize limited temporal information, including basic information from motion, e.g., optical flow computed between consecutive frames. In this paper, we compliment the SoTA methods by including long-range dependencies from trajectories for anomaly detection. To achieve that, we first created trajectories by running a tracker on two SoTA datasets, namely Avenue and Shanghai-Tech. We propose a prediction-based anomaly detection method using trajectories based on Social GANs, also called in this paper as temporal-based anomaly detection. Then, we hypothesize that late fusion of the result of this temporal-based anomaly detection system with spatial-based anomaly detection systems produces SoTA results. We verify this hypothesis on two spatial-based anomaly detection systems. We show that both cases produce results better than baseline spatial-based systems, indicating the usefulness of the temporal information coming from the trajectories for anomaly detection. We observe that the proposed approach depicts the maximum improvement in micro-level Area-Under-the-Curve (AUC) by 4.1% on CUHK Avenue and 3.4% on Shanghai-Tech over one of the baseline method. We also show a high performance on cross-data evaluation, where we learn the weights to combine spatial and temporal information on Shanghai-Tech and perform evaluation on CUHK Avenue and vice-versa.
异常检测中社会不可接受轨迹的时间线索
基于最先进(SoTA)深度学习的监控视频异常检测方法利用有限的时间信息,包括来自运动的基本信息,例如连续帧之间计算的光流。在本文中,我们通过包含来自异常检测轨迹的远程依赖来补充SoTA方法。为了实现这一目标,我们首先通过在两个SoTA数据集(即Avenue和Shanghai-Tech)上运行跟踪器来创建轨迹。本文提出了一种基于社会gan的轨迹预测异常检测方法,也称为基于时间的异常检测。然后,我们假设将这种基于时间的异常检测系统的结果与基于空间的异常检测系统的结果进行后期融合产生SoTA结果。我们在两个基于空间的异常检测系统上验证了这一假设。我们表明,这两种情况下产生的结果都比基线的基于空间的系统更好,这表明来自轨迹的时间信息对于异常检测的有用性。我们观察到,与基线方法相比,所提出的方法描述了中大大道和上海科技大学微观层面曲线下面积(AUC)的最大改善,分别为4.1%和3.4%。我们在交叉数据评估方面也表现出色,我们学习了将上海科技大学的时空信息结合起来的权重,并对中大大道进行了评估,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信