Using computer trees to derive lower bounds for selection problems

Frank Fussenegger, H. Gabow
{"title":"Using computer trees to derive lower bounds for selection problems","authors":"Frank Fussenegger, H. Gabow","doi":"10.1109/SFCS.1976.34","DOIUrl":null,"url":null,"abstract":"n(n-l) ••• {n-t+2)2nt leaves. This suffices to prove the Theorem, sinc;..e a binary tree with R, leaves has height at least Ilog R,1. Without loss of generality, assume all leaves of T are feasible for some input permutation. We begin by defining the problem and some basic concepts. Consider a linear ordered set of n elements, e.g., {l, ••• ,n}. We are given a permutation of the set, al, .•• ,an , called the input permutation. We wish to find elements that satisfy a given proposition,P(x1, ••• ,x t ). For example, P{xl ,x2) can be \"Xl is the largest and x2 is the 2 nd largest element.\"","PeriodicalId":434449,"journal":{"name":"17th Annual Symposium on Foundations of Computer Science (sfcs 1976)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th Annual Symposium on Foundations of Computer Science (sfcs 1976)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1976.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

n(n-l) ••• {n-t+2)2nt leaves. This suffices to prove the Theorem, sinc;..e a binary tree with R, leaves has height at least Ilog R,1. Without loss of generality, assume all leaves of T are feasible for some input permutation. We begin by defining the problem and some basic concepts. Consider a linear ordered set of n elements, e.g., {l, ••• ,n}. We are given a permutation of the set, al, .•• ,an , called the input permutation. We wish to find elements that satisfy a given proposition,P(x1, ••• ,x t ). For example, P{xl ,x2) can be "Xl is the largest and x2 is the 2 nd largest element."
用计算机树推导选择问题的下界
N (N - 1)••••{N -t+2)2nt个叶子。这足以证明定理,因为;对于一个有R的二叉树,叶结点的高度至少为ilogr,1。在不损失一般性的前提下,假设T的所有叶对于某个输入排列都是可行的。我们从定义问题和一些基本概念开始。考虑一个有n个元素的线性有序集合,例如{l,••••,n}。给定集合al,•••an的一个排列,称为输入排列。我们希望找到满足给定命题P(x1,•••,x t)的元素。例如,P{xl,x2)可以是“xl是最大的元素,x2是第二大元素”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信