Pre-processing Techniques for the QSAR Problem

L. Dumitriu, M. Craciun, A. Cocu, C. Segal
{"title":"Pre-processing Techniques for the QSAR Problem","authors":"L. Dumitriu, M. Craciun, A. Cocu, C. Segal","doi":"10.3233/978-1-58603-904-2-107","DOIUrl":null,"url":null,"abstract":"Predictive Toxicology (PT) attempts to describe the relationships between the chemical structure of chemical compounds and biological and toxicological processes. The most important issue related to real-world PT problems is the huge number of the chemical descriptors. A secondary issue is the quality of the data since irrelevant, redundant, noisy, and unreliable data have a negative impact on the prediction results. The pre-processing step of Data Mining deals with complexity reduction as well as data quality improvement through feature selection, data cleaning, and noise reduction. In this paper, we present some of the issues that can be taken into account for preparing data before the actual knowledge discovery is performed.","PeriodicalId":190102,"journal":{"name":"New Trends in Multimedia and Network Information Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Trends in Multimedia and Network Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-58603-904-2-107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predictive Toxicology (PT) attempts to describe the relationships between the chemical structure of chemical compounds and biological and toxicological processes. The most important issue related to real-world PT problems is the huge number of the chemical descriptors. A secondary issue is the quality of the data since irrelevant, redundant, noisy, and unreliable data have a negative impact on the prediction results. The pre-processing step of Data Mining deals with complexity reduction as well as data quality improvement through feature selection, data cleaning, and noise reduction. In this paper, we present some of the issues that can be taken into account for preparing data before the actual knowledge discovery is performed.
QSAR问题的预处理技术
预测毒理学(PT)试图描述化合物的化学结构与生物和毒理学过程之间的关系。与现实世界PT问题相关的最重要的问题是大量的化学描述符。第二个问题是数据的质量,因为不相关、冗余、嘈杂和不可靠的数据会对预测结果产生负面影响。数据挖掘的预处理步骤通过特征选择、数据清理和降噪来降低复杂性和提高数据质量。在本文中,我们提出了在执行实际知识发现之前准备数据时可以考虑的一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信