On using gait biometrics to enhance face pose estimation

Sung-Uk Jung, M. Nixon
{"title":"On using gait biometrics to enhance face pose estimation","authors":"Sung-Uk Jung, M. Nixon","doi":"10.1109/BTAS.2010.5634473","DOIUrl":null,"url":null,"abstract":"Many face biometrics systems use controlled environments where subjects are viewed directly facing the camera. This is less likely to occur in surveillance environments, so a process is required to handle the pose variation of the human head, change in illumination, and low frame rate of input image sequences. This has been achieved using scale invariant features and 3D models to determine the pose of the human subject. Then, a gait trajectory model is generated to obtain the correct the face region whilst handing the looming effect. In this way, we describe a new approach aimed to estimate accurate face pose. The contributions of this research include the construction of a 3D model for pose estimation from planar imagery and the first use of gait information to enhance the face pose estimation process.","PeriodicalId":378536,"journal":{"name":"International Conference on Biometrics: Theory, Applications and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Biometrics: Theory, Applications and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2010.5634473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Many face biometrics systems use controlled environments where subjects are viewed directly facing the camera. This is less likely to occur in surveillance environments, so a process is required to handle the pose variation of the human head, change in illumination, and low frame rate of input image sequences. This has been achieved using scale invariant features and 3D models to determine the pose of the human subject. Then, a gait trajectory model is generated to obtain the correct the face region whilst handing the looming effect. In this way, we describe a new approach aimed to estimate accurate face pose. The contributions of this research include the construction of a 3D model for pose estimation from planar imagery and the first use of gait information to enhance the face pose estimation process.
利用步态生物特征增强人脸姿态估计
许多面部生物识别系统使用受控环境,在这种环境中,受试者直接面对相机观看。这在监视环境中不太可能发生,因此需要一个过程来处理人类头部的姿势变化、照明变化和输入图像序列的低帧率。这是通过使用比例不变特征和3D模型来确定人体主体的姿势来实现的。然后,生成步态轨迹模型,在处理隐现效应的同时获得正确的人脸区域;通过这种方式,我们描述了一种新的方法,旨在估计准确的面部姿势。本研究的贡献包括从平面图像构建三维模型用于姿态估计,以及首次使用步态信息来增强人脸姿态估计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信